×

A level-set method for two-phase flows with moving contact line and insoluble surfactant. (English) Zbl 1349.76554

Summary: A level-set method for two-phase flows with moving contact line and insoluble surfactant is presented. The mathematical model consists of the Navier-Stokes equation for the flow field, a convection-diffusion equation for the surfactant concentration, together with the Navier boundary condition and a condition for the dynamic contact angle derived by the second author et al. [Phys. Fluids 22, No. 10, Paper No. 102103, 19 p. (2010; Zbl 1308.76082)]. The numerical method is based on the level-set continuum surface force method for two-phase flows with surfactant developed by the first author, Y. Yang and J. Lowengrub [J. Comput. Phys. 231, No. 17, 5897–5909 (2012; Zbl 1522.76105)] with some cautious treatment for the boundary conditions. The numerical method consists of three components: a flow solver for the velocity field, a solver for the surfactant concentration, and a solver for the level-set function. In the flow solver, the surface force is dealt with using the continuum surface force model. The unbalanced Young stress at the moving contact line is incorporated into the Navier boundary condition. A convergence study of the numerical method and a parametric study are presented. The influence of surfactant on the dynamics of the moving contact line is illustrated using examples. The capability of the level-set method to handle complex geometries is demonstrated by simulating a pendant drop detaching from a wall under gravity.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76Txx Multiphase and multicomponent flows

Software:

IIMPACK
Full Text: DOI

References:

[1] Afkhami, S.; Zaleski, S.; Bussmann, M., A mesh-dependent model for applying dynamic contact angles to VOF simulations, J. Comput. Phys., 228, 5370-5389 (2009) · Zbl 1280.76029
[2] Anderson, D. M.; McFadden, G. B.; Wheeler, A. A., Diffusive-interface methods in fluid dynamics, Annu. Rev. Fluid Mech., 30, 139-165 (1998) · Zbl 1398.76051
[3] Bell, J. B.; Marcus, D. L., A second-order projection method for variable-density flows, J. Comput. Phys., 101, 334-348 (1992) · Zbl 0759.76045
[4] Bertalmio, M.; Cheng, L.-T.; Osher, S.; Sapiro, G., Variational problems and partial differential equations on implicit surfaces, J. Comput. Phys., 174, 759-780 (2001) · Zbl 0991.65055
[5] Bonn, D.; Eggers, J.; Indekeu, J.; Meunier, J.; Rolley, E., Wetting and spreading, Rev. Mod. Phys., 81, 739 (2009)
[6] Brackbill, J. U.; Kothe, D. B.; Zemach, C., A continuum method for modeling surface tension, J. Comput. Phys., 100, 335-354 (1992) · Zbl 0775.76110
[7] Cermelli, P.; Fried, E.; Gurtin, M. E., Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces, J. Fluid Mech., 544, 339-351 (2005) · Zbl 1083.76061
[8] Cox, R. G., The dynamics of the spreading of liquids on a solid surface. Part I. Viscous flow, J. Fluid Mech., 168, 169 (1986) · Zbl 0597.76102
[9] Dussan V, E. B.; Davis, S. H., On the motion of a fluid-fluid interface along a solid surface, J. Fluid Mech., 65, 71 (1974) · Zbl 0282.76004
[10] Dussan V, E. B., On the spreading of liquids on solid surfaces: Static and dynamic contact lines, Annu. Rev. Fluid Mech., 11, 371-400 (1979)
[11] Elliott, C. M.; Stinner, B.; Styles, V.; Welford, R., Numerical computation of advection and diffusion on evolving diffuse interfaces, IMA J. Numer. Anal., 31, 786 (2011) · Zbl 1241.65081
[12] Glimm, J.; Grove, J.; Li, X. L.; Shyue, K.-M.; Zeng, Y.; Zhang, Q., Three dimensional front tracing, SIAM J. Sci. Comput., 19, 703-727 (1998) · Zbl 0912.65075
[13] Huang, H.; Liang, D.; Wetton, B., Computation of a moving drop/bubble on a solid surface using a front-tracking method, Commun. Math. Sci., 2, 535-552 (2004) · Zbl 1161.76541
[14] de Gennes, P. G., Wetting: Statics and dynamics, Rev. Mod. Phys., 57, 827 (1985)
[15] de Gennes, P. G.; Brochard-Wyart, F.; Quéré, D., Capillarity and Wetting Phenomena (2003), Springer: Springer New York
[16] Goerke, J., Pulmonary surfactant: functions and molecular composition, Biochim. Biophys. Acta, 1408, 79 (1998)
[17] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201-225 (1981) · Zbl 0462.76020
[18] Hou, T.; Lowengrub, J.; Shelley, M., Boundary integral methods for multicomponent fluids and multiphase materials, J. Comput. Phys., 169, 302-362 (2001) · Zbl 1046.76029
[19] Huh, C.; Scriven, L. E., Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Colloid Interface Sci., 35, 85 (1971)
[20] Jiang, G.-S.; Peng, D., Weighted ENO schemes for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 21, 2126 (2000) · Zbl 0957.35014
[21] Lai, M.-C.; Tseng, Y.-H.; Huang, H., Numerical simulation of moving contact lines with surfactant by immersed boundary method, Commun. Comput. Phys., 8, 735-757 (2010) · Zbl 1364.76125
[22] LeVeque, R.; Li, Z., Immersed interface methods for Stokes flow with elastic boundaries or surface tension, SIAM J. Sci. Comput., 18, 709 (1997) · Zbl 0879.76061
[23] Leung, S.; Lowengrub, J.; Zhao, H., A grid based particle method for solving partial differential equations on evolving surfaces and modeling high order geometrical motion, J. Comput. Phys., 230, 2540-2561 (2011) · Zbl 1316.65089
[24] Li, Z.; Ito, K., The Immersed Interface Method—Numerical Solutions of PDEs Involving Interfaces and Irregular Domains, Frontiers Appl. Math. (2006), SIAM · Zbl 1122.65096
[25] Li, Z.; Lai, M.-C.; He, G.; Zhao, H., An augmented method for free boundary problems with moving contact lines, Comput. Fluids, 39, 1033-1040 (2010) · Zbl 1242.76047
[26] Lowengrub, J.; Xu, J.-J.; Voigt, A., Surface phase separation and flow in a simple model of multicomponent drops and vesicles, Fluid Dyn. Mater. Proc., 3, 1-19 (2007) · Zbl 1153.76441
[27] Macdonald, C. B.; Ruuth, S., The implicit closest point method for the numerical solution of partial differential equations on surfaces, SIAM J. Sci. Comput., 31, 4330-4350 (2009) · Zbl 1205.65238
[28] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-361 (2005) · Zbl 1117.76049
[29] Morrow, N. R.; Mason, G., Recovery of oil by spontaneous inhibition, Curr. Opin. Colloid Interface Sci., 6, 321 (2001)
[30] Osher, S.; Fedkiw, R. P., Level set methods: An overview and some recent results, J. Comput. Phys., 169, 463 (2001) · Zbl 0988.65093
[31] Peskin, C., The immersed boundary methods, Acta Numer., 11, 479-517 (2002) · Zbl 1123.74309
[32] Pozrikidis, C., Interfacial dynamics for Stokes flow, J. Comput. Phys., 169, 250-301 (2001) · Zbl 1046.76012
[33] Qian, T.-Z.; Wang, X.-P.; Sheng, P., Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E, 68, 016306 (2003)
[34] Qian, T.; Wang, X.; Sheng, P., Molecular hydrodynamics of the moving contact line in two-phase immiscible flows, Commun. Comput. Phys., 1, 1-52 (2006) · Zbl 1115.76079
[35] Rätz, A.; Voigt, A., PDEs on surfaces—a diffuse interface approach, Commun. Math. Sci., 4, 575-590 (2006) · Zbl 1113.35092
[36] Ren, W.; E, W., Boundary conditions for the moving contact line problem, Phys. Fluids, 10, 022101 (2007) · Zbl 1146.76513
[37] Ren, W.; Hu, D.; E, W., Continuum models for the contact line problem, Phys. Fluids, 22, 102103 (2010) · Zbl 1308.76082
[38] Ren, W.; E, W., Contact line dynamics on heterogeneous surfaces, Phys. Fluids, 23, 072103 (2011) · Zbl 1308.76212
[39] Ren, W.; E, W., Derivation of continuum models for the moving contact line problem based on thermodynamic principles, Commun. Math. Sci., 9, 597 (2011) · Zbl 1414.76019
[40] Renardy, M.; Renardy, R.; Li, J., Numerical simulation of moving contact line problems using a volume-of-fluid method, J. Comput. Phys., 171, 243-263 (2001) · Zbl 1044.76051
[41] Ruuth, S. J.; Merriman, B., A simple embedding method for solving partial differential equations on surfaces, J. Comput. Phys., 227, 1943-1961 (2008) · Zbl 1134.65058
[42] Sethian, J. A.; Smereka, P., Level set methods for fluid interfaces, Annu. Rev. Fluid Mech., 35, 341 (2003) · Zbl 1041.76057
[43] Shu, C.-W., Total-variation-diminishing time discretization, SIAM J. Sci. Stat. Comput., 9, 1073 (1988) · Zbl 0662.65081
[44] Sikalo, S.; Wilhelm, H.-D.; Roisman, I. V.; Jakirlic, S.; Tropea, C., Dynamic contact angle of spreading droplets: Experiments and simulations, Phys. Fluids, 17, 062103 (2005) · Zbl 1187.76600
[45] Spelt, P. D.M., A level-set approach for simulations of flows with multiple moving contact lines with hysteresis, J. Comput. Phys., 207, 389-404 (2005) · Zbl 1213.76127
[46] Sui, Y.; Ding, H.; Spelt, P. D.M., Numerical simulations of flows with moving contact lines, Annu. Rev. Fluid Mech., 46, 97-119 (2014) · Zbl 1297.76177
[47] Sussman, M.; Smereka, P.; Osher, S., A level-set approach for computing solutions of incompressible two-phase flow, J. Comput. Phys., 114, 146-159 (1994) · Zbl 0808.76077
[48] Teigen, K. E.; Li, X.; Lowengrub, J.; Wang, F.; Voigt, A., A diffuse-interface approach for modeling transport, diffusion and adsorption/desorption of material quantities on a deformable interface, Commun. Math. Sci., 7, 1009-1037 (2009) · Zbl 1186.35168
[49] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y.-J., A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169, 708-759 (2001) · Zbl 1047.76574
[50] Van Loan, C., Computational Frameworks for the Fast Fourier Transform (1992), SIAM · Zbl 0757.65154
[51] Xu, J.-J.; Zhao, H., An Eulerian formulation for solving partial differential equations along a moving interface, J. Sci. Comput., 19, 573-594 (2003) · Zbl 1081.76579
[52] Xu, J.-J.; Li, Z.; Lowengrub, J.; Zhao, H., A level set method for solving interfacial flows with surfactant, J. Comput. Phys., 212, 590-616 (2006) · Zbl 1161.76548
[53] Xu, J.-J.; Li, Z.; Lowengrub, J.; Zhao, H., Numerical study of surfactant-laden drop-drop interactions, Commun. Comput. Phys., 10, 453-473 (2011) · Zbl 1364.76165
[54] Xu, J.-J.; Yang, Y.; Lowengrub, J., A level-set continuum method for two-phase flows with insoluble surfactant, J. Comput. Phys., 231, 5897-5909 (2012) · Zbl 1522.76105
[55] Xu, J.-J.; Yuan, H. Z.; Huang, Y. Q., A 3D level-set method for solving convection-diffusion along moving surfaces, Sci. Sin. Math., 42, 5, 445-454 (2012), (in Chinese) · Zbl 1488.65304
[56] Xu, J.-J.; Huang, Y.; Lai, M.-C.; Li, Z., A coupled immersed interface and level-set method for three dimensional interfacial flows with insoluble surfactant, Commun. Comput. Phys., 15, 451-469 (2014) · Zbl 1373.76199
[57] Yokoi, K.; Vadillo, D.; Hinch, J.; Hutchings, I., Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface, Phys. Fluids, 21, 072102 (2009) · Zbl 1183.76587
[58] Yon, S.; Pozrikidis, C., Deformation of a liquid drop adhering to a plane wall: significance of the drop viscosity and the effect of an insoluble surfactant, Phys. Fluids, 11, 1297-1308 (1999) · Zbl 1147.76541
[59] Zahedi, S.; Gustavsson, K.; Kreiss, G., A conservative level set method for contact line dynamics, J. Comput. Phys., 228, 6361-6375 (2009) · Zbl 1261.76042
[60] Zeeuw, P. M., Matrix-dependent prolongations and restrictions in a blackbox multigrid solvers, J. Comput. Appl. Math., 33, 1-27 (1990) · Zbl 0717.65099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.