×

Invariant measures for the nonlinear stochastic heat equation with no drift term. (English) Zbl 1541.60043

Summary: This paper deals with the long-term behavior of the solution to the nonlinear stochastic heat equation \(\frac{\partial u}{\partial t} - \frac{1}{2}\Delta u = b(u){\dot{W}}\), where \(b\) is assumed to be a globally Lipschitz continuous function and the noise \({\dot{W}}\) is a centered and spatially homogeneous Gaussian noise that is white in time. We identify a set of nearly optimal conditions on the initial data, the correlation measure of the noise, and the weight function \(\rho\), which together guarantee the existence of an invariant measure in the weighted space \(L^2_\rho ({\mathbb{R}}^d)\). In particular, our result covers the parabolic Anderson model (i.e., the case when \(b(u) = \lambda u\)) starting from the Dirac delta measure.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35R60 PDEs with randomness, stochastic partial differential equations
37L40 Invariant measures for infinite-dimensional dissipative dynamical systems
60H40 White noise theory

Software:

DLMF

References:

[1] Chen, L.; Dalang, RC, Moments and growth indices for the nonlinear stochastic heat equation with rough initial conditions, Ann. Probab., 43, 6, 3006-3051, 2015 · Zbl 1338.60155 · doi:10.1214/14-AOP954
[2] Chen, L.; Kim, K., Nonlinear stochastic heat equation driven by spatially colored noise: moments and intermittency, Acta Math. Sci. Ser. B (Engl. Ed.), 39, 3, 645-668, 2019 · Zbl 1499.60215 · doi:10.1007/s10473-019-0303-6
[3] Chen, L.; Huang, J., Comparison principle for stochastic heat equation on \(\mathbb{R}^d\), Ann. Probab., 47, 2, 989-1035, 2019 · Zbl 1433.60049 · doi:10.1214/18-AOP1277
[4] Carmona, RA; Molchanov, SA, Parabolic Anderson problem and intermittency, Mem. Am. Math. Soc., 108, 518, 125, 1994 · Zbl 0925.35074 · doi:10.1090/memo/0518
[5] Dalang, R., Khoshnevisan, D., Mueller, C., Nualart, D., Xiao, Y.: A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1962, p. 216. Springer, (2009). Held at the University of Utah, Salt Lake City, UT, May 8-19, 2006, Edited by Khoshnevisan and Firas Rassoul-Agha · Zbl 1168.60027
[6] Dalang, RC, Extending the martingale measure stochastic integral with applications to spatially homogeneous S.P.D.E.’s., Electron. J. Probab., 4, 6-29, 1999 · Zbl 0922.60056 · doi:10.1214/EJP.v4-43
[7] Walsh, J.B.: An introduction to stochastic partial differential equations. In: École D’été de Probabilités de Saint-Flour, XIV—1984. Lecture Notes in Math., vol. 1180, pp. 265-439. Springer (1986). doi:10.1007/BFb0074920 · Zbl 0608.60060
[8] Cerrai, S.: Second Order PDE’s in Finite and Infinite Dimension. Lecture Notes in Mathematics. A Probabilistic Approach, vol. 1762, p. 330. Springer (2001). doi:10.1007/b80743 · Zbl 0983.60004
[9] Da Prato, G.; Zabczyk, J., Ergodicity for Infinite-Dimensional Systems. London Mathematical Society Lecture Note Series, 339, 1996, Cambridge: Cambridge University Press, Cambridge · Zbl 0849.60052 · doi:10.1017/CBO9780511662829
[10] Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions. In: Encyclopedia of Mathematics and Its Applications, 2nd edn, vol. 152, p. 493. Cambridge University Press, Cambridge (2014). doi:10.1017/CBO9781107295513 · Zbl 1317.60077
[11] Tessitore, G., Zabczyk, J.: Invariant measures for stochastic heat equations. Probab. Math. Stat. 18(2, Acta Univ. Wratislav. No. 2111), 271-287 (1998) · Zbl 0986.60057
[12] Gu, Y.; Li, J., Fluctuations of a nonlinear stochastic heat equation in dimensions three and higher, SIAM J. Math. Anal., 52, 6, 5422-5440, 2020 · Zbl 1456.60138 · doi:10.1137/19M1296380
[13] Dunlap, A.; Gu, Y.; Ryzhik, L.; Zeitouni, O., The random heat equation in dimensions three and higher: the homogenization viewpoint, Arch. Ration. Mech. Anal., 242, 2, 827-873, 2021 · Zbl 1481.35031 · doi:10.1007/s00205-021-01694-9
[14] Foondun, M.; Khoshnevisan, D., Intermittence and nonlinear parabolic stochastic partial differential equations, Electron. J. Probab., 14, 21-548568, 2009 · Zbl 1190.60051 · doi:10.1214/EJP.v14-614
[15] Dalang, RC; Quer-Sardanyons, L., Stochastic integrals for SPDE’s: a comparison, Expo. Math., 29, 1, 67-109, 2011 · Zbl 1234.60064 · doi:10.1016/j.exmath.2010.09.005
[16] Amir, G.; Corwin, I.; Quastel, J., Probability distribution of the free energy of the continuum directed random polymer in \(1+1\) dimensions, Commun. Pure Appl. Math., 64, 4, 466-537, 2011 · Zbl 1222.82070 · doi:10.1002/cpa.20347
[17] Chen, L.; Huang, J.; Khoshnevisan, D.; Kim, K., Dense blowup for parabolic SPDEs, Electron. J. Probab., 24, 118-33, 2019 · Zbl 1427.35379 · doi:10.1214/19-ejp372
[18] Chen, L.; Kim, K., Stochastic comparisons for stochastic heat equation, Electron. J. Probab., 25, 140-38, 2020 · Zbl 1468.60078 · doi:10.1214/20-ejp541
[19] Joseph, M.; Khoshnevisan, D.; Mueller, C., Strong invariance and noise-comparison principles for some parabolic stochastic PDEs, Ann. Probab., 45, 1, 377-403, 2017 · Zbl 1367.60082 · doi:10.1214/15-AOP1009
[20] Sanz-Solé, M., Sarrà, M.: Hölder continuity for the stochastic heat equation with spatially correlated noise. In: Seminar on Stochastic Analysis, Random Fields and Applications, III (Ascona, 1999). Progress in Probabability, vol. 52, pp. 259-268. Birkhäuser, Basel, (2002)
[21] Peszat, S.; Zabczyk, J., Stochastic evolution equations with a spatially homogeneous Wiener process, Stoch. Process. Appl., 72, 2, 187-204, 1997 · Zbl 0943.60048 · doi:10.1016/S0304-4149(97)00089-6
[22] Balan, RM; Chen, L., Parabolic Anderson model with space-time homogeneous Gaussian noise and rough initial condition, J. Theor. Probab., 31, 4, 2216-2265, 2018 · Zbl 1428.60088 · doi:10.1007/s10959-017-0772-2
[23] Da Prato, G.; Kwapień, S.; Zabczyk, J., Regularity of solutions of linear stochastic equations in Hilbert spaces, Stochastics, 23, 1, 1-23, 1987 · Zbl 0634.60053 · doi:10.1080/17442508708833480
[24] Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions, p. 951. U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge (2010) With 1 CD-ROM. (Windows, Macintosh and UNIX) · Zbl 1198.00002
[25] Billingsley, P.: Convergence of probability measures. In: Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication, 2nd edn, p. 277. Wiley, New York (1999). doi:10.1002/9780470316962 · Zbl 0944.60003
[26] Assing, S.; Manthey, R., Invariant measures for stochastic heat equations with unbounded coefficients, Stoch. Process. Appl., 103, 2, 237-256, 2003 · Zbl 1075.60542 · doi:10.1016/S0304-4149(02)00211-9
[27] Brzeźniak, Za; Ga̧tarek, D., Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces, Stoch. Process. Appl., 84, 2, 187-225, 1999 · Zbl 0996.60074 · doi:10.1016/S0304-4149(99)00034-4
[28] Cerrai, S., Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term, Probab. Theory Relat. Fields, 125, 2, 271-304, 2003 · Zbl 1027.60064 · doi:10.1007/s00440-002-0230-6
[29] Eckmann, J-P; Hairer, M., Invariant measures for stochastic partial differential equations in unbounded domains, Nonlinearity, 14, 1, 133-151, 2001 · Zbl 0970.60071 · doi:10.1088/0951-7715/14/1/308
[30] Misiats, O.; Stanzhytskyi, O.; Yip, NK, Existence and uniqueness of invariant measures for stochastic reaction-diffusion equations in unbounded domains, J. Theor. Probab., 29, 3, 996-1026, 2016 · Zbl 1360.60126 · doi:10.1007/s10959-015-0606-z
[31] Misiats, O.; Stanzhytskyi, O.; Yip, NK, Invariant measures for stochastic reaction-diffusion equations with weakly dissipative nonlinearities, Stochastics, 92, 8, 1197-1222, 2020 · Zbl 1490.60189 · doi:10.1080/17442508.2019.1691212
[32] Grafakos, L.: Modern Fourier analysis. In: Graduate Texts in Mathematics, 3rd edn, vol. 250, p. 624. Springer (2014). doi:10.1007/978-1-4939-1230-8 · Zbl 1304.42002
[33] Loh, W-L; Sun, S.; Wen, J., On fixed-domain asymptotics, parameter estimation and isotropic Gaussian random fields with Matérn covariance functions, Ann. Stat., 49, 6, 3127-3152, 2021 · Zbl 1486.62254 · doi:10.1214/21-aos2077
[34] Stein, M.L.: Interpolation of spatial data. In: Springer Series in Statistics. Some Theory for Kriging, p. 247. Springer (1999). doi:10.1007/978-1-4612-1494-6 · Zbl 0924.62100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.