×

An entropy stable finite volume scheme for the two dimensional Navier-Stokes equations on triangular grids. (English) Zbl 1426.76414

Summary: We construct a finite volume scheme for the compressible Navier-Stokes equations on triangular grids which are entropy stable at the semi-discrete level. This is achieved by using entropy stable inviscid fluxes constructed in the recently published work [the first author et al., Commun. Comput. Phys. 19, No. 5, 1111–1140 (2016; Zbl 1373.76143)], and computing viscous fluxes in terms of entropy variables. Wall boundary conditions are also constructed to be entropy stable and are imposed in a weak manner. The resulting scheme is applied to solve several standard viscous test cases, such as flow over a flat-plat, flow past a NACA-0012 airfoil and unsteady flow past a cylinder, to demonstrate its stability and accuracy.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
35Q30 Navier-Stokes equations
76N15 Gas dynamics (general theory)

Citations:

Zbl 1373.76143

Software:

Chebfun
Full Text: DOI

References:

[1] Ray, D.; Chandrashekar, P.; Fjordholm, U. S.; Mishra, S., Entropy stable scheme on two-dimensional unstructured grids for euler equations, Commun. Comput. Phys., 19, 05, 1111-1140 (2016) · Zbl 1373.76143
[2] Hughes, T. J.R.; Franca, L. P.; Mallet, M., A new finite element formulation for computational fluid dynamics. I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics, Comput. Methods Appl. Mech. Eng., 54, 2, 223-234 (1986) · Zbl 0572.76068
[3] Tadmor, E., The numerical viscosity of entropy stable schemes for systems of conservation laws. {I}, Math. Comput., 49, 179, 91-103 (1987) · Zbl 0641.65068
[4] Tadmor, E., Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numer., 12, 451-512 (2003) · Zbl 1046.65078
[5] Tadmor, E.; Zhong, W., Energy-Preserving and Stable Approximations for the Two-Dimensional Shallow Water Equations, 67-94 (2008), Springer: Springer Berlin, Heidelberg · Zbl 1391.76496
[6] Fjordholm, U. S.; Mishra, S.; Tadmor, E., Energy preserving and energy stable schemes for the shallow water equations, (F. Cucker, A. P.; Todd, M., Foundations of Computational Mathematics, Proc. FoCM held Hong Kong 2008. Foundations of Computational Mathematics, Proc. FoCM held Hong Kong 2008, London Mathematical Society Lecture Notes, Series 363 (2009), Cambridge University Press), 93-139 · Zbl 1381.76236
[7] Ismail, F.; Roe, P., Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks, J. Comput. Phys., 228, 15, 5410-5436 (2009) · Zbl 1280.76015
[8] Chandrashekar, P., Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations, Commun. Comput. Phys., 14, 5, 1252-1286 (2013) · Zbl 1373.76121
[9] Fjordholm, U. S.; Mishra, S.; Tadmor, E., Arbitrarily High-order Accurate Entropy Stable Essentially Nonoscillatory Schemes for Systems of Conservation Laws, SIAM J. Numer. Anal., 50, 2, 544-573 (2012) · Zbl 1252.65150
[10] Chandrashekar, P.; Klingenberg, C., Entropy stable finite volume scheme for ideal compressible MHD on 2-D Cartesian Meshes, SIAM J. Numer. Anal., 54, 2, 1313-1340 (2016) · Zbl 1381.76213
[11] Winters, A. R.; Gassner, G. J., Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations, J. Comput. Phys., 304, 72-108 (2016) · Zbl 1349.76407
[12] Winters, A. R.; Gassner, G. J., An entropy stable finite volume scheme for the equations of shallow water magnetohydrodynamics, J. Sci. Comput., 67, 2, 514-539 (2016) · Zbl 1381.76227
[13] Hiltebrand, A.; Mishra, S., Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws, Numer. Math., 126, 1, 103-151 (2014) · Zbl 1303.65083
[14] Gallego-Valencia, J. P.; Klingenberg, C.; Chandrashekar, P., On limiting for higher order discontinuous Galerkin method for 2D Euler equations, Bull. Braz. Math. Soc. New Ser., 47, 1, 335-345 (2016) · Zbl 1341.35104
[15] Gassner, G. J.; Winters, A. R.; Kopriva, D. A., Split form Nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations, J. Comput. Phys., 327, 39-66 (2016) · Zbl 1422.65280
[16] Dutt, P., Stable boundary conditions and difference schemes for Navier-Stokes equations, SIAM J. Numer. Anal., 25, 2, 245-267 (1988) · Zbl 0701.76032
[17] Shakib, F.; Hughes, T. J.R.; Johan, Z., A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 89, 1, 141-219 (1991)
[18] Carpenter, M. H.; Fisher, T. C.; Nielsen, E. J.; Frankel, S. H., Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces, SIAM J. Sci. Comput., 36, 5, B835-B867 (2014) · Zbl 1457.65140
[19] Gustafsson, B.; Sundström, A., Incompletely parabolic problems in fluid dynamics, SIAM J. Appl. Math., 35, 2, 343-357 (1978) · Zbl 0389.76050
[20] Nordström, J., The use of characteristic boundary conditions for the Navier-Stokes equations, Comput. Fluids, 24, 5, 609-623 (1995) · Zbl 0845.76075
[21] Hesthaven, J. S.; Gottlieb, D., A stable penalty method for the compressible Navier-Stokes equations: I. Open boundary conditions, SIAM J. Sci. Comput., 17, 3, 579-612 (1996) · Zbl 0853.76061
[22] Nordström, J.; Svärd, M., Well-posed boundary conditions for the Navier-Stokes equations, SIAM J. Numer. Anal., 43, 3, 1231-1255 (2005), (electronic) · Zbl 1319.35163
[23] Svärd, M.; Mishra, S., Entropy stable schemes for initial-boundary-value conservation laws, Z. Angew. Math. Phys., 63, 6, 985-1003 (2012) · Zbl 1263.65083
[24] Dubois, F.; LeFloch, P., Boundary conditions for nonlinear hyperbolic systems of conservation laws, Nonlinear Hyperbolic Equations—Theory, Computation Methods, and Applications (Aachen, 1988). Nonlinear Hyperbolic Equations—Theory, Computation Methods, and Applications (Aachen, 1988), Notes Numerical Fluid Mechanics, 24, 96-104 (1989), Vieweg: Vieweg Braunschweig · Zbl 0662.76099
[25] Parsani, M.; Carpenter, M. H.; Nielsen, E. J., Entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations, J. Comput. Phys., 292, 88-113 (2015) · Zbl 1349.76639
[26] Jovanović, V.; Rohde, C., Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws, SIAM J. Numer. Anal., 43, 6, 2423-2449 (2006) · Zbl 1111.65081
[27] Madrane, A.; Fjordholm, U. S.; Mishra, S.; Tadmor, E., Entropy conservative and entropy stable finite volume schemes for multi-dimensional conservation laws on unstructured meshes, Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS) (2012)
[28] Mock, M., Systems of conservation laws of mixed type, J. Differ. Equ., 37, 1, 70-88 (1980) · Zbl 0413.34017
[29] Godunov, S. K., An interesting class of quasilinear systems, Dokl. Akad. Nauk. SSSR, 139, 521-523 (1961) · Zbl 0125.06002
[30] Harten, A., On the symmetric form of systems of conservation laws with entropy, J. Comput. Phys., 49, 1, 151-164 (1983) · Zbl 0503.76088
[31] Vijayasundaram, G., Transonic flow simulations using an upstream centered scheme of Godunov in finite elements, J. Comput. Phys., 63, 2, 416-433 (1986) · Zbl 0592.76081
[32] Stoufflet, B., Implicit finite element methods for the Euler equations, Numerical Methods for the Euler Equations of Fluid Dynamics. (Rocquencourt, 1983), 409-434 (1985), SIAM: SIAM Philadelphia, PA · Zbl 0608.76058
[33] Angrand, F.; Lafon, F. C., Flux Formulation using a Fully 2D Approximate Roe Riemann Solver, (Donato, A.; Oliveri, F., Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects. Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects, Notes on Numerical Fluid Mechanics (NNFM), 43 (1993), Vieweg+Teubner Verlag), 15-22 · Zbl 0967.76568
[34] Mavriplis, D. J., Adaptive mesh generation for viscous flows using Delaunay triangulation, J. Comput. Phys., 90, 2, 271-291 (1990) · Zbl 0701.76037
[35] Anderson, W. K., A grid generation and flow solution method for the euler equations on unstructured grids, J. Comput. Phys., 110, 1, 23-38 (1994) · Zbl 0790.76051
[36] Barth, T., On the role of involutions in the discontinuous Galerkin discretization of Maxwell and magnetohydrodynamic systems, (Arnold, D. N.; Bochev, P. B.; Lehoucq, R. B.; Nicolaides, R. A.; Shashkov, M., Compatible Spatial Discretizations. Compatible Spatial Discretizations, The IMA Volumes in Mathematics and its Applications, 142 (2006), Springer: Springer New York), 69-88 · Zbl 1135.78008
[37] Osher, S., Riemann solvers, the entropy condition, and difference approximations, SIAM J. Numer. Anal., 21, 2, 217-235 (1984) · Zbl 0592.65069
[38] Chandrashekar, P., Finite volume discretization of heat equation and compressible Navier-Stokes equations with weak Dirichlet boundary condition on triangular grids, Int. J. Adv. Eng. Sci Appl. Math., 8, 3, 174-193 (2016) · Zbl 1367.65122
[39] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 2, 357-372 (1981) · Zbl 0474.65066
[40] Gottlieb, S.; Shu, C.-W.; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 1, 89-112 (2001), (electronic) · Zbl 0967.65098
[41] Blazek, J., Computational Fluid Dynamics : Principles and Applications (2005), Elsevier: Elsevier Amsterdam San Diego · Zbl 0995.76001
[42] Yee, H.; Sandham, N.; Djomehri, M., Low-dissipative high-order shock-capturing methods using characteristic-based filters, J. Comput. Phys., 150, 1, 199-238 (1999) · Zbl 0936.76060
[43] Platte, R. B.; Trefethen, L. N., Chebfun: a new kind of numerical computing, (Fitt, A. D.; Norbury, J.; Ockendon, H.; Wilson, E., Progress in Industrial Mathematics at ECMI 2008 (2010), Springer), 69-87 · Zbl 1220.65100
[44] Ray, D.; Chandrashekar, P., Entropy stable schemes for compressible Euler equations, Int. J. Numer. Anal. Model. Ser. B, 4, 4, 335-352 (2013) · Zbl 1463.76036
[45] Jameson, A., Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes, J. Sci. Comput., 34, 2, 188-208 (2008) · Zbl 1133.76031
[46] Kawaguti, M., Numerical solution of the Navier-Stokes equations for the flow in a two-dimensional cavity, J. Phys. Soc. Jpn., 16, 2307-2315 (1961) · Zbl 0126.42403
[47] Burggraf, O., Analytical and numerical studies of the structure of steady separated flows, J. Fluid Mech., 24, 113-151 (1966)
[48] Ghia, U.; Ghia, K. N.; Shin, C. T., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 3, 387-411 (1982) · Zbl 0511.76031
[49] Swanson, R.; Langer, S., Comparison of Naca 0012 Laminar Flow Solutions: Structured and Unstructured Grid Methods Nasa/Tm2016219003, NASA technical memorandum (2017)
[50] Venkatakrishnan, V., Viscous computations using a direct solver, Comput. Fluids, 18, 2, 191-204 (1990) · Zbl 0692.76026
[51] Schäfer, M.; Turek, S.; Durst, F.; Krause, E.; Rannacher, R., Benchmark computations of laminar flow around a cylinder, (Hirschel, E., Flow Simulation with High-Performance Computers II. Flow Simulation with High-Performance Computers II, Notes on Numerical Fluid Mechanics (NNFM), 48 (1996), Vieweg+Teubner Verlag), 547-566 · Zbl 0874.76070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.