×

Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes. I: Finite element solutions. (English) Zbl 1195.92004

Summary: We developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck (PNP) equations with singular permanent charges for simulating electrodiffusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent, while the Nernst-Planck equation was defined only in the solvent. We applied a stable regularization scheme to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and formulated regular, well-posed PNP equations. An inexact-Newton method was used to solve the coupled nonlinear elliptic equations for the steady problems; while an Adams-Bashforth-Crank-Nicolson method was devised for time integration for the unsteady electrodiffusion. We numerically investigated the conditioning of the stiffness matrices for the finite element approximations of the two formulations of the Nernst-Planck equation, and theoretically proved that the transformed formulation is always associated with an ill-conditioned stiffness matrix. We also studied the electroneutrality of the solution and its relation with the boundary conditions on the molecular surface, and concluded that a large net charge concentration is always present near the molecular surface due to the presence of multiple species of charged particles in the solution. The numerical methods are shown to be accurate and stable by various test problems, and are applicable to real large-scale biophysical electrodiffusion problems.

MSC:

92C05 Biophysics
92C40 Biochemistry, molecular biology
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

Software:

APBS; FEtk; CHARMM; SG
Full Text: DOI

References:

[1] Abaid, Nicole; Eisenberg, Robert S.; Liu, Weishi, Asymptotic expansions of \(I-V\) relations via a Poisson-Nernst-Planck system, SIAM J. Appl. Dyn. Syst., 7, 4, 1507-1526 (2008) · Zbl 1167.34361
[2] Baker, N. A.; Bashford, D.; Case, D. A., Implicit solvent electrostatics in biomolecular simulation, (Leimkuhler, B.; Chipot, C.; Elber, R.; Laaksonen, A.; Mark, A.; Schlick, T.; Schutte, C.; Skeel, R., New Algorithms for Macromolecular Simulation (2006), Springer)
[3] Baker, N. A.; Sept, D.; Joseph, S.; Holst, M. J.; McCammon, J. A., Electrostatics of nanosystems: application to microtubules and the ribosome, Proc. Natl. Acad. Sci. USA, 98, 10037-10041 (2001)
[4] Bank, R. E.; Rose, D. J.; Fichtner, W., Numerical methods for semiconductor device simulation, SIAM J. Sci. Statist. Comput., 4, 416-435 (1983) · Zbl 0521.65086
[5] Barcilon, V.; Chen, D. P.; Eisenberg, R. S.; Jerome, J. W., Qualitative properties of steady-state Poisson-Nernst-Planck systems: perturbation and simulation study, SIAM J. Appl. Math., 57, 3, 631-648 (1997) · Zbl 0874.34018
[6] Berg, Otto G.; von Hippel, Peter H., Diffusion-controlled macromolecular interactions, Ann. Rev. Biophys. Biophys. Chem., 14, 131-160 (1985)
[7] Biler, Piotr; Hebisch, Waldemar; Nadzieja, Tadeusz, The Debye system: existence and large time behavior of solutions, Nonlinear Anal., 23, 1189-1209 (1994) · Zbl 0814.35054
[8] Bolintineanu, Dan S.; Sayyed-Ahmad, Abdallah; Ted Davis, H.; Kaznessis, Yiannis N., Poisson-Nernst-Planck models of nonequilibrium ion electrodiffusion through a protegrin transmembrane pore, PLoS Comput. Biol., 5, 1, e1000277 (2009)
[9] Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M., CHARMM: a program for macromolecular energy, minimization, and dynamics calculations, J. Comput. Chem., 4, 187-217 (1983)
[10] Cardenas, A. E.; Coalson, R. D.; Kurnikova, M. G., Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin a channel conductance, Biophys. J., 79, 1, 80-93 (2000)
[11] Chen, Long; Holst, Michael; Xu, Jinchao, The finite element approximation of the nonlinear Poisson-Boltzmann equation, SIAM J. Numer. Anal., 45, 2298-2320 (2007) · Zbl 1152.65478
[12] Chen, Zhiming; Zou, Jun, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math., 79, 2, 175-202 (1998) · Zbl 0909.65085
[13] Chern, I-Liang; Liu, Jian-Guo; Wang, Wei-Cheng, Accurate evaluation of electrostatics for macromolecules in solution, Methods Appl. Anal., 10, 309-328 (2003) · Zbl 1099.92500
[14] Cohen, H.; Cooley, J. W., The numerical solution of the time-dependent Nernst-Planck equations, Biophys. J., 5, 145-162 (1965)
[15] Cox, S. M.; Matthews, P. C., Exponential time differencing for stiff systems, J. Comput. Phys., 176, 2, 430-455 (2002) · Zbl 1005.65069
[16] Davis, M. E.; Madura, J. D.; Luty, B. A.; McCammon, J. A., Electrostatics and diffusion of molecules in solution – simulations with the University-of-Houston-Brownian Dynamics program, Comput. Phys. Commun., 62, 2-3, 187-197 (1991)
[17] Eisenberg, Bob; Liu, Weishi, Poisson-Nernst-Planck systems for ion channels with permanent charges, SIAM J. Math. Anal., 38, 6, 1932-1966 (2007) · Zbl 1137.34022
[18] Eisenberg, R.; Chen, D. P., Poisson-Nernst-Planck (PNP) theory of an open ionic channel, Biophys. J., 64, 2, A22 (1993)
[19] Gatti, E.; Micheletti, S.; Sacco, R., A new Galerkin framework for the drift-diffusion equation in semiconductors, East-West J. Numer. Math., 6, 101-135 (1998) · Zbl 0915.65128
[20] Gillespie, Dirk; Nonner, W.; Eisenberg, Robert S., Coupling Poisson-Nernst-Planck and Density Functional Theory to calculate ion flux, J. Phys. - Condens. Mat., 14, 12129-12145 (2002)
[21] Gilson, M. K.; Davis, M. E.; Luty, B. A.; McCammon, J. A., Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation, J. Phys. Chem., 97, 14, 3591-3600 (1993)
[22] Gilson, M. K.; Sharp, K. A.; Honig, B. H., Calculating the electrostatic potential of molecules in solution – method and error assessment, J. Comput. Chem., 9, 4, 327-335 (1988)
[23] Graf, P.; Nitzan, A.; Kurnikova, A. G.; Coalson, R. D., A dynamic lattice Monte Carlo model of ion transport in inhomogeneous dielectric environments: method and implementation, J. Phys. Chem. B, 104, 12324-12338 (2000)
[24] He, Yinnian; Sun, Weiwei, Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 45, 2, 837-869 (2007) · Zbl 1145.35318
[25] M. Holst, Finite element toolkit. <http://www.fetk.org/>; M. Holst, Finite element toolkit. <http://www.fetk.org/>
[26] Holst, M., Adaptive numerical treatment of elliptic systems on manifolds, Adv. Comput. Math., 15, 1-4, 139-191 (2001) · Zbl 0997.65134
[27] M. Holst, J.A. McCammon, Z. Yu, Y.C. Zhou, Y. Zhu, Adaptive finite element modeling techniques for the Poisson-Boltzmann equation, Commun. Comput. Phys., submitted for publication.; M. Holst, J.A. McCammon, Z. Yu, Y.C. Zhou, Y. Zhu, Adaptive finite element modeling techniques for the Poisson-Boltzmann equation, Commun. Comput. Phys., submitted for publication. · Zbl 1373.82077
[28] Jerome, J. W., Analysis of Charge Transport: A Mathematical Study of Semiconductor Devices (1996), Springer
[29] Jerome, Joseph W., Consistency of semiconductor modeling: an existence/stability analysis for the stationary van Boosbroeck system, SIAM J. Appl. Math., 45, 565-590 (1985) · Zbl 0611.35026
[30] Jerome, Joseph W.; Kerkhoven, Thomas, A finite element approximation theory for the drift diffusion semiconductor model, SIAM J. Numer. Anal., 28, 2, 403-422 (1991) · Zbl 0725.65120
[31] Kurnikova, M. G.; Coalson, R. D.; Graf, P.; Nitzan, A., A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin a channel, Biophys. J., 76, 2, 642-656 (1999)
[32] Li, B., Minimization of electrostatic free energy and the Poisson-Boltzmann equation for molecular solvation with implicit solvent, SIAM J. Math. Anal., 40, 2536-2566 (2009) · Zbl 1180.35504
[33] Liu, Weishi, Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems, SIAM J. Appl. Math., 65, 3, 754-766 (2005) · Zbl 1079.34044
[34] Lu, B.; Zhou, Y. C.; Holst, M.; Andrew McCammon, J., Recent progress in numerical solution of the Poisson-Boltzmann equation for biophysical applications, Commun. Comput. Phys., 3, 973-1009 (2008) · Zbl 1186.92005
[35] Lu, B. Z.; Zhou, Y. C.; Huber, Gary A.; Bond, Steve D.; Holst, Michael J.; McCammon, J. A., Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution, J. Chem. Phys., 127, 135102 (2007)
[36] Lu, Tiao; Cai, Wei, A Fourier spectral-discontinuous Galerkin method for time-dependent 3-D Schrodinger-Poisson equations with discontinuous potentials, J. Comput. Appl. Math., 220, 588-614 (2008) · Zbl 1146.65072
[37] Gilson, M. K.; Sharp, K.; Honig, B., Calculating the electrostatic potential of molecules in solution: method and error assessment, J. Comput. Chem., 9, 327-335 (1987)
[38] Mori, Y.; Jerome, J. W.; Peskin, C. S., A three-dimensional model of cellular electrical activity, Bull. Inst. Math., Acad. Sinica, 2, 367-390 (2007) · Zbl 1129.92038
[39] Mori, Yoichiro; Fishman, Glenn I.; Peskin, Charles S., Ephaptic conduction in a cardiac strand model with 3D electrodiffusion, Proc. Natl. Acad. Sci. USA, 105, 6463-6468 (2008)
[40] Nadler, B.; Schuss, Z.; Singer, A.; Eisenberg, R. S., Ionic diffusion through confined geometries: from Langevin equations to partial differential equations, J. Phys. - Condens. Mat., 16, 22, S2153-S2165 (2004)
[41] Nernst, W., Die elektromotorische wirksamkeit der ionen, Z. Physik. Chem., 4, 129 (1889)
[42] Planck, M., über die erregung von electricität und wärme in electrolyten, Ann. Phys. Chem., 39, 161 (1980)
[43] Prohl, Andreas; Schmuck, Markus, Convergent discretizations for the Nernst-Planck-Poisson system, Numer. Math., 111, 4, 591-630 (2009) · Zbl 1178.65106
[44] Quere, P. Le.; Alziary de Roquefort, T., Computation of natural convection in two-dimension cavities with Chebyshev polynomials, J. Chem. Phys., 57, 210-228 (1982) · Zbl 0585.76128
[45] Rubinstein, Isaak, Electro-Diffusion of Ions (1990), SIAM
[46] Michel F. Sanner, Arthur J. Olson, Jean-Claude Spehner, Fast and robust computation of molecular surfaces, in: Proceedings of the 11th ACM symposium on Computational Geometry, 1995, pp. C6-C7.; Michel F. Sanner, Arthur J. Olson, Jean-Claude Spehner, Fast and robust computation of molecular surfaces, in: Proceedings of the 11th ACM symposium on Computational Geometry, 1995, pp. C6-C7.
[47] Schuss, Z.; Nadler, B.; Eisenberg, R. S., Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model, Phys. Rev. E, 6403, 3 (2001)
[48] H. Si, K. Gaertner, Meshing piecewise linear complexes by constrained delaunay tetrahedralizations, in: Proceedings of the 14th International Meshing Roundtable, 2005, pp. 147-163.; H. Si, K. Gaertner, Meshing piecewise linear complexes by constrained delaunay tetrahedralizations, in: Proceedings of the 14th International Meshing Roundtable, 2005, pp. 147-163.
[49] Song, Y. H.; Zhang, Y. J.; Bajaj, C. L.; Baker, N. A., Continuum diffusion reaction rate calculations of wild-type and mutant mouse acetylcholinesterase: adaptive finite element analysis, Biophys. J., 87, 3, 1558-1566 (2004)
[50] Song, Y. H.; Zhang, Y. J.; Shen, T. Y.; Bajaj, C. L.; McCammon, J. A.; Baker, N. A., Finite element solution of the steady-state Smoluchowski equation for rate constant calculations, Biophys. J., 86, 4, 2017-2029 (2004)
[51] Tai, K. S.; Bond, S. D.; Macmillan, H. R.; Baker, N. A.; Holst, M. J.; McCammon, J. A., Finite element simulations of acetylcholine diffusion in neuromuscular junctions, Biophys. J., 84, 4, 2234-2241 (2003)
[52] Weiser, Jörg; Shenkin, Peter S.; Clark Still, W., Optimization of Gaussian surface calculations and extension to solvent-accessible surface areas, J. Comput. Chem., 20, 688-703 (1999)
[53] Yang, S. Y.; Zhou, Y. C.; Wei, G. W., Comparison of the Discrete Singular Convolution algorithm and the Fourier pseudospectral method for solving partial differential equations, Comput. Phys. Commun., 143, 113-135 (2002) · Zbl 0993.65112
[54] Zhou, Y. C.; Feig, Michael; Wei, G. W., Highly accurate biomolecular electrostatics in continuum dielectric environments, J. Comput. Chem., 29, 87-97 (2007)
[55] Zhou, Y. C.; Lu, B. Z.; Huber, Gary A.; Holst, Michael J.; McCammon, J. A., Continuum simulations of acetylcholine consumption by acetylcholinesterase – a Poisson-Nernst-Planck approach, J. Phys. Chem. B, 112, 2, 270-275 (2008)
[56] Zhou, Zhongxiang; Payne, Philip; Vasquez, Max; Kuhn, Nat; Levitt, Michael, Finite-difference solution of the Poisson-Boltzmann equation: complete elimination of self-energy, J. Comput. Chem., 17, 1344-1351 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.