×

Vector-valued modular forms from the Mumford forms, Schottky-Igusa form, product of Thetanullwerte and the amazing Klein formula. (English) Zbl 1277.14027

Let \(C\) be a curve of genus \(g\) over the complex field. It is known that the maps \(\psi_n : \text{Sym}^n H^0(K_C) \to H^0(K_C^n)\) where \(n \geq 2\) and \(K_C\) is the canonical line bundle, are surjective when \(g=2\) or \(C\) is non hyperelliptic. The kernels of these maps hence describe equations for the canonical embedding of \(C\).
Let \(N_n = \dim_{\mathbb{C}} \text{Sym}^n H^0(K_C)\) and \(M_n= \dim_{\mathbb{C}} H^0(K_C^n)\) and \(K_n=M_n-N_n\). In the first part of the article, for each \(n\), the authors exhibit holomorphic global sections \(s_{i_1,\ldots,i_{K_n}}\), for \(i_1,\ldots,i_{K_n} \in \{1,\ldots,M_n\}\), of certain vector bundles over the moduli space of curves of genus \(g\). If \(\omega_{i_1}, \ldots, \omega_{i_{N_n}}\) are the images under \(\psi_n\) of a subset of the canonical basis of \(\text{Sym}^n H^0(K_C)\), the section \(s_{i_{N_n+1},\ldots,i_{M_n}}\) vanishes when \(\omega_{i_1}, \ldots, \omega_{i_{N_n}}\) is not a basis (Proposition 2.5). Applications to super-string theory are developed in a recent paper of the first author [“Extending the Belavin-Knizhnik ‘wonderful formula’ by the characterization of the Jacobian”, arxiv:1208.5994].
The second part of the article explores an application of this proposition when \(g=4\) and \(n=2\). In this case, a non hyperelliptic curve canonically embedded in \(\mathbb{P}^3\) is supported by a unique quadric \(Q\), whose equation is given by \[ Q : \sum_{i,j=1}^{4} \frac{1+\delta_{ij}}{2} s_{ij}(\tau) \omega_i \omega_j=0 \] where \(\delta_{ij}\) is the Kronecker symbol and the subscript \(i,j\) of \(s\) must be understood as an element \((ij)\) of \(\{1,\ldots,10\}\) such that \(\omega_{(ij)}\) is the image under \(\psi_2\) of \(\omega_i \omega_j\). On the other hand, a similar equation can be derived from the Shottky-Igusa form \(F_4\), expressing the discriminant \(\Delta_4\) of the quadric \(Q\) in two different ways (Lemma 3.2). Moreover, since the quadric has rank \(3\) if and only if an even Thetanullwert is zero, the authors deduce that \(\Delta_4\) is up to a constant equal to the square root of the Siegel modular form \(\chi_{68}\) defined as the product of the even Thetanullwerte (Theorem.3.4). Finally, they also find a functional relation between the singular component of the theta divisor and the Riemann period matrix (Theorem 3.5).
In a finale remark, the authors compare their result with a formula found by F. Klein [Math. Ann. XXXVI, 1–83 (1890 ; JFM 22.0498.01)] and mentioned in [Math. Res. Lett. 17, No. 2, 323–333 (2010; Zbl 1228.14028)]. This formula expresses \(\chi_{68}\) up to a constant as the product of (a different normalization) of the square of \(\Delta_4\) with the eighth power of the tact invariant [G. Salmon, Paris. Gauthier-Villars et Fils. [J. de Math. spéc. (3) V. 280.] (1891; JFM 23.0716.02)]. Although the present work enlightens Klein’s formula, it seems to the reviewer that it does not explain the tact invariant factor by itself.

MSC:

14H42 Theta functions and curves; Schottky problem
14H40 Jacobians, Prym varieties
14H55 Riemann surfaces; Weierstrass points; gap sequences

References:

[1] Marco Matone and Roberto Volpato, Higher genus superstring amplitudes from the geometry of moduli space, Nuclear Phys. B 732 (2006), no. 1-2, 321 – 340. · Zbl 1192.81280 · doi:10.1016/j.nuclphysb.2005.10.036
[2] Marco Matone and Roberto Volpato, Superstring measure and non-renormalization of the three-point amplitude, Nuclear Phys. B 806 (2009), no. 3, 735 – 747. · Zbl 1192.81281 · doi:10.1016/j.nuclphysb.2008.08.011
[3] Marco Matone and Roberto Volpato, Getting superstring amplitudes by degenerating Riemann surfaces, Nuclear Phys. B 839 (2010), no. 1-2, 21 – 51. · Zbl 1206.81107 · doi:10.1016/j.nuclphysb.2010.05.020
[4] Marco Matone and Roberto Volpato, Linear relations among holomorphic quadratic differentials and induced Siegel’s metric on \Cal M_{\?}, J. Math. Phys. 52 (2011), no. 10, 102305, 13. · Zbl 1272.81164 · doi:10.1063/1.3653550
[5] M. Matone, Extending the Belavin-Knizhnik “wonderful formula” by the characterization of the Jacobian, JHEP 1210 (2012), 175.
[6] John Fay, Kernel functions, analytic torsion, and moduli spaces, Mem. Amer. Math. Soc. 96 (1992), no. 464, vi+123. · Zbl 0777.32011 · doi:10.1090/memo/0464
[7] John D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Mathematics, Vol. 352, Springer-Verlag, Berlin-New York, 1973. · Zbl 0281.30013
[8] M. Matone and R. Volpato, Determinantal characterization of canonical curves and combinatorial theta identities, Math. Ann. DOI:10.1007/s00208-012-0787-z · Zbl 1273.14071
[9] David Mumford, Stability of projective varieties, Enseignement Math. (2) 23 (1977), no. 1-2, 39 – 110. · Zbl 0363.14003
[10] A. A. Belavin and V. G. Knizhnik, Algebraic geometry and the geometry of quantum strings, Phys. Lett. B 168 (1986), no. 3, 201 – 206. · Zbl 0693.58043 · doi:10.1016/0370-2693(86)90963-9
[11] Loriano Bonora, Adrian Lugo, Marco Matone, and Jorge Russo, A global operator formalism on higher genus Riemann surfaces: \?-\? systems, Comm. Math. Phys. 123 (1989), no. 2, 329 – 352. · Zbl 0688.30033
[12] J.-B. Bost and T. Jolicœur, A holomorphy property and the critical dimension in string theory from an index theorem, Phys. Lett. B 174 (1986), no. 3, 273 – 276. · doi:10.1016/0370-2693(86)91097-X
[13] Jean-Michel Bismut and Daniel S. Freed, The analysis of elliptic families. I. Metrics and connections on determinant bundles, Comm. Math. Phys. 106 (1986), no. 1, 159 – 176. Jean-Michel Bismut and Daniel S. Freed, The analysis of elliptic families. II. Dirac operators, eta invariants, and the holonomy theorem, Comm. Math. Phys. 107 (1986), no. 1, 103 – 163. Jean-Michel Bismut and Daniel S. Freed, The analysis of elliptic families. I. Metrics and connections on determinant bundles, Comm. Math. Phys. 106 (1986), no. 1, 159 – 176. Jean-Michel Bismut and Daniel S. Freed, The analysis of elliptic families. II. Dirac operators, eta invariants, and the holonomy theorem, Comm. Math. Phys. 107 (1986), no. 1, 103 – 163. · Zbl 0657.58037
[14] Luis Alvarez-Gaumé, Jean-Benoît Bost, Gregory Moore, Philip Nelson, and Cumrun Vafa, Bosonization on higher genus Riemann surfaces, Comm. Math. Phys. 112 (1987), no. 3, 503 – 552. · Zbl 0647.14019
[15] D. B. Ray and I. M. Singer, Analytic torsion for complex manifolds, Ann. of Math. (2) 98 (1973), 154 – 177. · Zbl 0267.32014 · doi:10.2307/1970909
[16] A. A. Beĭlinson and Yu. I. Manin, The Mumford form and the Polyakov measure in string theory, Comm. Math. Phys. 107 (1986), no. 3, 359 – 376. · Zbl 0604.14016
[17] Erik Verlinde and Herman Verlinde, Chiral bosonization, determinants and the string partition function, Nuclear Phys. B 288 (1987), no. 2, 357 – 396. · Zbl 0990.83549 · doi:10.1016/0550-3213(87)90219-7
[18] Gerard van der Geer, Siegel modular forms and their applications, The 1-2-3 of modular forms, Universitext, Springer, Berlin, 2008, pp. 181 – 245. · Zbl 1259.11051 · doi:10.1007/978-3-540-74119-0_3
[19] M. Matone and R. Volpato, The singular locus of the theta divisor and quadrics through a canonical curve, arXiv:0710.2124 [math.AG]. · Zbl 1273.14071
[20] N. I. Shepherd-Barron, Thomae’s formulae for non-hyperelliptic curves and spinorial square roots of theta-constants on the moduli space of curves, arXiv:0802.3014 [math.AG].
[21] A. Belavin, V. Knizhnik, A. Morozov, and A. Perelomov, Two- and three-loop amplitudes in the bosonic string theory, Phys. Lett. B 177 (1986), no. 3-4, 324 – 328. · doi:10.1016/0370-2693(86)90761-6
[22] A. Morozov, Explicit formulae for one-, two-, three- and four-loop string amplitudes, Phys. Lett. B 184 (1987), no. 2-3, 171 – 176. , https://doi.org/10.1016/0370-2693(87)90563-6 A. Morozov, Analytical anomaly and heterotic string in the formalism of continual integration, Phys. Lett. B 184 (1987), no. 2-3, 177 – 183. · doi:10.1016/0370-2693(87)90564-8
[23] E. D’Hoker and D. H. Phong, Two-loop superstrings. IV. The cosmological constant and modular forms, Nuclear Phys. B 639 (2002), no. 1-2, 129 – 181. · Zbl 0997.81083 · doi:10.1016/S0550-3213(02)00516-3
[24] Takashi Ichikawa, On Teichmüller modular forms, Math. Ann. 299 (1994), no. 4, 731 – 740. · Zbl 0803.30036 · doi:10.1007/BF01459809
[25] Takashi Ichikawa, Teichmüller modular forms of degree 3, Amer. J. Math. 117 (1995), no. 4, 1057 – 1061. · Zbl 0856.11024 · doi:10.2307/2374959
[26] Eric D’Hoker and D. H. Phong, Asyzygies, modular forms, and the superstring measure. II, Nuclear Phys. B 710 (2005), no. 1-2, 83 – 116. · Zbl 1115.81377 · doi:10.1016/j.nuclphysb.2004.12.020
[27] Jun-ichi Igusa, Schottky’s invariant and quadratic forms, E. B. Christoffel (Aachen/Monschau, 1979) Birkhäuser, Basel-Boston, Mass., 1981, pp. 352 – 362.
[28] Jun-ichi Igusa, On the irreducibility of Schottky’s divisor, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 531 – 545 (1982). · Zbl 0501.14026
[29] Shigeaki Tsuyumine, Thetanullwerte on a moduli space of curves and hyperelliptic loci, Math. Z. 207 (1991), no. 4, 539 – 568. · Zbl 0752.14019 · doi:10.1007/BF02571407
[30] Gilles Lachaud, Christophe Ritzenthaler, and Alexey Zykin, Jacobians among abelian threefolds: a formula of Klein and a question of Serre, Math. Res. Lett. 17 (2010), no. 2, 323 – 333. · Zbl 1228.14028 · doi:10.4310/MRL.2010.v17.n2.a11
[31] Felix Klein, Zur Theorie der Abel’schen Functionen, Math. Ann. 36 (1890), no. 1, 1 – 83 (German). · JFM 22.0498.01 · doi:10.1007/BF01199432
[32] G. Salmon, Traité de géométrie analytique à trois dimensions. Troisième partie. Ouvrage traduit de l’anglais sur la quatrième édition, Paris, 1892. · JFM 29.0489.08
[33] A. A. Belavin and V. G. Knizhnik, Complex geometry and the theory of quantum strings, Zh. Èksper. Teoret. Fiz. 91 (1986), no. 2, 364 – 390 (Russian); English transl., Soviet Phys. JETP 64 (1986), no. 2, 214 – 228 (1987). · Zbl 0693.58043
[34] Juan Mateos Guilarte and José M. Muñoz Porras, Four-loop vacuum amplitudes for the bosonic string, Proc. Roy. Soc. London Ser. A 451 (1995), no. 1942, 319 – 329. · Zbl 0872.14039 · doi:10.1098/rspa.1995.0127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.