×

The generalized modified Bessel function and its connection with Voigt line profile and Humbert functions. (English) Zbl 1436.33020

Summary: Recently Dixit, Kesarwani, and Moll introduced a generalization \(K_{z, w}(x)\) of the modified Bessel function \(K_z(x)\) and showed that it satisfies an elegant theory similar to that of \(K_z(x)\). In this paper, we show that while \(K_{\frac{1}{2}}(x)\) is an elementary function, \(K_{\frac{1}{2}, w}(x)\) can be written in the form of an infinite series of Humbert functions. As an application of this result, we generalize the transformation formula for the logarithm of the Dedekind eta function \(\eta(z)\). We also establish a connection between \(K_{\frac{1}{2}, w}(x)\) and the cumulative distribution function corresponding to the Voigt line profile.

MSC:

33E20 Other functions defined by series and integrals
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)

Software:

DLMF

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions, with Formulas, Graphs and Mathematical Tables (1970), Dover: Dover New York · Zbl 0515.33001
[2] Appell, P., Sur les fonctions hypergéometriques de plusieurs variables, Mém. des Sciences Math. de l’Acad. des Sciences de Paris, vol. III (1925), Gauthier-Villars: Gauthier-Villars Paris · JFM 51.0281.09
[3] Armstrong, B. H., Spectrum line profiles: the Voigt function, J. Quant. Spectrosc. Radiat. Transf., 7, 61-88 (1967)
[4] Berndt, B. C.; Lee, Y.; Sohn, J., Koshliakov’s formula and Guinand’s formula in Ramanujan’s lost notebook, (Alladi, K., Surveys in Number Theory. Surveys in Number Theory, Developments in Mathematics, vol. 17 (2008), Springer: Springer New York), 21-42 · Zbl 1183.33007
[5] Brychkov, Yu. A., Reduction formulas for the Appell and Humbert functions, Integral Transforms Spec. Funct., 28, 22-38 (2017) · Zbl 1365.33014
[6] Brychkov, Yu. A.; Sup Kim, Yong; Rathie, Arjun K., On new reduction formulas for the Humbert functions \(\Psi_2, \Phi_2\) and \(\Phi_3\), Integral Transforms Spec. Funct., 28, 350-360 (2017) · Zbl 1367.33015
[7] Burchnall, J. L.; Chaundy, T. W., Expansions of Appell’s double hypergeometric functions (II), Quart. J. Math., 12, 112-128 (1941) · Zbl 0028.15001
[8] Dixit, A., Analogues of the general theta transformation formula, Proc. Roy. Soc. Edinburgh Sect. A, 143, 371-399 (2013) · Zbl 1357.11047
[9] Dixit, A.; Kesarwani, A.; Moll, V. H., A generalized modified Bessel function and a higher level analogue of the theta transformation formula, J. Math. Anal. Appl., 459, 385-418 (2018), (with an appendix by N.M. Temme) · Zbl 1377.33004
[10] Dulov, E. N.; Khripunov, D. M., Voigt lineshape function as a solution of the parabolic partial differential equation, J. Quant. Spectrosc. Radiat. Transf., 107, 421-428 (2007)
[11] (Gradshteyn, I. S.; Ryzhik, I. M., Table of Integrals, Series, and Products (2007), Academic Press: Academic Press San Diego) · Zbl 1208.65001
[12] Grimmett, G.; Stirzaker, D., Probability and Random Processes (2001), Oxford University Press: Oxford University Press Oxford, England · Zbl 1015.60002
[13] Hesse, R.; Streubel, P.; Szargan, R., Product or sum: comparative tests of Voigt, and product or sum of Gaussian and Lorentzian functions in the fitting of synthetic Voigt-based X-ray photoelectron spectra, Surf. Interface Anal., 39, 381-391 (2007)
[14] Huang, X.; Yung, Y. L., A common misunderstanding about the Voigt line profile, J. Atmos. Sci., 61, 1630 (2003)
[15] Humbert, P., The confluent hypergeometric functions of two variables, Proc. Roy. Soc. Edinburgh, 41, 73-96 (1922) · JFM 47.0930.03
[16] Ida, T.; Ando, M.; Toraya, H., Extended pseudo-Voigt function for approximating the Voigt profile, J. Appl. Cryst., 33, 1311-1316 (2000)
[17] Jahnke, E.; Emde, F.; Lösch, F., Tables of Higher Functions (1960), McGraw-Hill: McGraw-Hill New York · Zbl 0087.12801
[18] Keshavamurthy, R. S., Voigt lineshape function as a series of confluent hypergeometric functions, J. Phys. A: Math. Gen., 20, 273-278 (1987) · Zbl 0621.33009
[19] Magnus, W.; Oberhettinger, F.; Soni, R. P., Formulas and Theorems for the Special Functions of Mathematical Physics (1966), Springer · Zbl 0143.08502
[20] (Olver, F. W.J.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST Handbook of Mathematical Functions (2010), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 1198.00002
[21] Oberhettinger, F., Tables of Mellin Transforms (1974), Springer-Verlag: Springer-Verlag New York · Zbl 0289.44003
[22] Prudnikov, A. P.; Brychkov, Yu. A.; Marichev, O. I., Elementary Functions, Integrals and Series, vol. 2 (1986), Gordon and Breach: Gordon and Breach New York · Zbl 0733.00004
[23] Ramanujan, S., The Lost Notebook and Other Unpublished Papers (1988), Narosa: Narosa New Delhi · Zbl 0639.01023
[24] Srivastava, H. M.; Manocha, H. L., A Treatise on Generating Functions (1984), Halsted Press: Halsted Press New York · Zbl 0535.33001
[25] Temme, N. M., Special Functions: An Introduction to the Classical Functions of Mathematical Physics (1996), Wiley-Interscience Publication: Wiley-Interscience Publication New York · Zbl 0856.33001
[26] Thompson, W. J., Numerous neat algorithms for the Voigt profile function, Comput. Phys., 7, 627-631 (1993)
[27] Wald, S.; Henkel, M., On integral representations and asymptotics of some hypergeometric functions in two variables, Integral Transforms Spec. Funct., 29, 2, 95-112 (2018) · Zbl 1384.33029
[28] Watson, G. N., A Treatise on the Theory of Bessel Functions (1944), Cambridge University Press: Cambridge University Press London · Zbl 0063.08184
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.