×

Proto-exact categories of matroids, Hall algebras, and \(K\)-theory. (English) Zbl 1442.18017

Summary: This paper examines the category \(\mathbf{Mat}_{\bullet}\) of pointed matroids and strong maps from the point of view of Hall algebras. We show that \(\mathbf{Mat}_{\bullet}\) has the structure of a finitary proto-exact category – a non-additive generalization of exact category due to T. Dyckerhoff and M. Kapranov [Higher Segal spaces. Cham: Springer (2019; Zbl 1459.18001)]. We define the algebraic \(K\)-theory \(K_* (\mathbf{Mat}_{\bullet})\) of \(\mathbf{Mat}_{\bullet}\) via the Waldhausen construction, and show that it is non-trivial, by exhibiting injections \[ \pi^s_n (\mathbb{S}) \hookrightarrow K_n (\mathbf{Mat}_{\bullet}) \] from the stable homotopy groups of spheres for all \(n\). Finally, we show that the Hall algebra of \(\mathbf{Mat}_{\bullet}\) is a Hopf algebra dual to Schmitt’s matroid-minor Hopf algebra.

MSC:

18D99 Categorical structures
05B35 Combinatorial aspects of matroids and geometric lattices
16T30 Connections of Hopf algebras with combinatorics
19A99 Grothendieck groups and \(K_0\)
19D99 Higher algebraic \(K\)-theory

Citations:

Zbl 1459.18001

References:

[1] Alvarenga, R.: Hall algebra and graphs of Hecke operators for elliptic curves (2018). arXiv:1805.00567
[2] Crapo, H.; Schmitt, W., A free subalgebra of the algebra of matroids, Eur. J. Combin., 26, 7, 1066-1085 (2005) · Zbl 1071.05025 · doi:10.1016/j.ejc.2004.05.006
[3] Chu, C.; Lorscheid, O.; Santhanam, R., Sheaves and \(K\)-theory for \({\mathbb{F}}_1\)-schemes, Adv. Math., 229, 4, 2239-2286 (2012) · Zbl 1288.19004 · doi:10.1016/j.aim.2011.12.023
[4] Crowley, C., Giansiracusa, N., Mundinger, J.: A module-theoretic approach to matroids (2017). arXiv:1712.03440 · Zbl 1430.14114
[5] Deitmar, A., Remarks on zeta functions and \(K\)-theory over \({ F}_1\), Proc. Jpn. Acad. Ser. A Math. Sci., 82, 8, 141-146 (2006) · Zbl 1173.14004 · doi:10.3792/pjaa.82.141
[6] Dyckerhoff, T.: Higher categorical aspects of Hall algebras (2019). arXiv: 1505.06940 · Zbl 1404.16016
[7] Dyckerhoff, T., Kapranov, M.: Higher Segal Spaces I (2019). arXiv: 1212.3563 · Zbl 1459.18001
[8] Eppolito, C., Jun, J., Szczesny, M.: Hopf algebras for matroids over hyperfields (2019). arXiv:1712.08903 · Zbl 1439.05045
[9] Galvez, I., Kock, J., Tonks, A.: Decomposition spaces, incidence algebras and Möbius inversion I: basic theory. Adv. Math. (2014). arXiv:1512.07573(to appear) · Zbl 1403.00023
[10] Galvez, I., Kock, J., Tonks, A.: Decomposition spaces, incidence algebras and Möbius inversion II: completeness, length filtration, and finiteness. Adv. Math. (2014). arXiv:1512.07577(to appear) · Zbl 1403.18016
[11] Galvez, I., Kock, J., Tonks, A.: Decomposition spaces, incidence algebras and Möbius inversion III: the decomposition space of Möbius intervals. Adv. Math. (2018). arXiv:1512.07580(to appear) · Zbl 1403.18017
[12] Hekking, J.: Segal objects in homotopical categories & K-theory of Proto-exact Categories, Master’s Thesis, Univ. of Utrecht (2017). https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/master/hekking_master.pdf
[13] Heunen, C.; Patta, V., The category of matroids, Appl. Categorical Struct., 26, 2, 205-237 (2018) · Zbl 1403.18002 · doi:10.1007/s10485-017-9490-2
[14] Hubery, A., From triangulated categories to lie algebras: a theorem of Peng and Xiao, trends in representation theory of algebras and related topics, Contemp. Math., 406, 51-66 (2006) · Zbl 1107.16021 · doi:10.1090/conm/406/07653
[15] Kapranov, M.; Schiffmann, O.; Vasserot, E., The Hall algebra of a curve, Sel. Math. (N.S.), 23, 1, 117-177 (2017) · Zbl 1366.16026 · doi:10.1007/s00029-016-0239-9
[16] Kook, W.; Reiner, V.; Stanton, D., A convolution formula for the Tutte polynomial, J. Combin. Theory Ser. B, 76, 2, 297-300 (1999) · Zbl 0936.05028 · doi:10.1006/jctb.1998.1888
[17] Kremnizer, K.; Szczesny, M., Feynman graphs, rooted trees, and Ringel-Hall algebras, Commun. Math. Phys., 289, 2, 561-577 (2009) · Zbl 1173.81008 · doi:10.1007/s00220-008-0694-z
[18] Loday, J-L; María, M., Combinatorial Hopf algebras,, Quanta Maths, 11, 347-383 (2010) · Zbl 1217.16033
[19] Mikhail, K., Eisenstein series and quantum affine algebras, J. Math. Sci., 84, 5, 1311-1360 (1997) · Zbl 0929.11015 · doi:10.1007/BF02399194
[20] Mikhalkin, G.; Zharkov, I., Tropical curves, their Jacobians and theta functions,, Curves Abelian Var., 465, 203-230 (2008) · Zbl 1152.14028 · doi:10.1090/conm/465/09104
[21] Oxley, J., Matroid Theory (2006), Oxford: Oxford University Press, Oxford · Zbl 1115.05001
[22] Schiffmann, O.: Lectures on Hall algebras, Geometric methods in representation theory. II, Sémin. Congr., 24-II, pp. 1-141. Soc. Math. France, Paris (2012) · Zbl 1309.18012
[23] Schmitt, WR, Incidence Hopf algebras, J. Pure Appl. Algebra, 96, 3, 299-330 (1994) · Zbl 0808.05101 · doi:10.1016/0022-4049(94)90105-8
[24] Szczesny, M., Incidence categories, J. Pure Appl. Algebra, 215, 4, 303-309 (2011) · Zbl 1215.18008 · doi:10.1016/j.jpaa.2010.04.020
[25] Szczesny, M.: On the Hall algebra of coherent sheaves on \({\mathbb{P}}^1\) over \({\mathbb{F}}_1\). J. Pure Appl. Algebra 216(3), 662-672 (2012) · Zbl 1279.14022
[26] Szczesny, M.: Representations of quivers over \({\mathbb{F}}_1\) and Hall algebras. Int. Math. Res. Not. 2012(10), 2377-2404 (2012) · Zbl 1288.14012
[27] Szczesny, M.: On the Hall algebra of semigroup representations over \({\mathbb{F}}_1\). Math. Z. 276(1-2), 371-386 (2014) · Zbl 1342.20061
[28] Takeuchi, M., Free Hopf algebras generated by coalgebras, J. Math. Soc. Jpn., 23, 4, 561-582 (1971) · Zbl 0217.05902 · doi:10.2969/jmsj/02340561
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.