×

A class of non-Kähler complex manifolds. (English) Zbl 0652.14018

A class of non-Kähler compact complex manifolds is constructed, including the Inoue-Hirzebruch surfaces as the dimension 2 case and extending work of H. Tsuchihashi [Tôhoku Math. J., II. Ser. 39, 519-532 (1987; Zbl 0635.32016)] and the author [Math. Ann. 276, 515-528 (1987; Zbl 0595.14031)]. The construction uses the theory of torus embeddings and is explicit enough to allow one to compute the Kodaira dimension (which is \(-\infty)\), the algebraic dimension and all the Hodge and Betti numbers.
Reviewer: G.K.Sankaran

MSC:

14J25 Special surfaces
32J15 Compact complex surfaces
14E25 Embeddings in algebraic geometry
Full Text: DOI

References:

[1] A ASHET AL, Smooth Compactification of Locally Symmetric Varieties, Math Sci Press, Brookline, Mass., 1975 · Zbl 0334.14007
[2] S I BOREWICS AND I R SAPAREVIC, Zahlentheorie, Birkhauser, Basel, 196
[3] K BROWN, Cohomology of Groups, Graduate Texts in Mathematics 87, Springer-Verlag, Berlin, Heidelberg, New York, 1982 · Zbl 0584.20036
[4] V I DANILOV, The Geometry of Toric Varieties, Russian Math Surveys 33 (1978), 97-15 · Zbl 0425.14013 · doi:10.1070/RM1978v033n02ABEH002305
[5] A DOLD, Lectures on Algebraic Topology, Die Grundlehren der mathematischen Wissenschaften, Band 200, Springer-Verlag, Berlin, Heidelberg, New York, 1972. · Zbl 0234.55001
[6] E FREITAG, Lokale und globale Invarianten der Hilbertschen Modulgruppe, Inv Math 24(1974), 121 148
[7] R GODEMENT, Theorie des faisceaux, Publications de lnstitut de Mathematique de Universite d Strasbourg XIII, Hermann, Paris, 1958 · Zbl 0080.16201
[8] A. GROTHENDIECK, Quelques points d’algebre homologique, Thoku Math J 9 (1957), 1 19-22 · Zbl 0118.26104
[9] M INOUE, New surfaces with no meromorphic functions, Proc Int Congress of Math, Vancouve 1974, (R James, Ed), Vol 1, (1975), 423-426 · Zbl 0365.14010
[10] M INOUE, New surfaces with no meromorphic functions II, Complex Analysis and Algebraic Geometry, (W Baily and T Shioda, Eds), Iwanami Shoten, Tokyo and Cambridge University Press, Cambridge, 1977 · Zbl 0365.14011 · doi:10.1017/CBO9780511569197.007
[11] M -N ISHIDA AND T. OCA, Torus embeddngs and tangent complexes, Thoku Math J 33 (1981), 337 381. · Zbl 0456.14005 · doi:10.2748/tmj/1178229400
[12] MA KATO, An example of a 3-dimensional complex manifold (in Japanese), Symposium on Algebrai Geometry, Sendai 1980, 179-190
[13] T ODA, On Torus Embeddings and Applications, Tata Institute Lecture Notes, Bombay, 1978 · Zbl 0417.14043
[14] G K SANKARAN, Effective resolution of cusps on Hubert modular varieties, Math Proc Cam Phi Soc 99 (1986), 51-57 · Zbl 0593.14009 · doi:10.1017/S030500410006391X
[15] G K. SANKARAN, Higher-dimensional analogues of Inoue-Hirzebruch surfaces, Math Ann. 276 (1987), 515-528 · Zbl 0595.14031 · doi:10.1007/BF01450846
[16] D SEGAL, Polycyclic Groups, Cambridge Tracts in Mathematics 82, Cambridge University Press, Cambridge, 1983 · Zbl 0516.20001
[17] T SHINTANI, A remark on zeta functions of algebraic number fields, in Automorphic Forms, Representation Theory and Arithmetic: Papers Presented at the Bombay Colloquium 1979, (H Stark, Ed), Springer-Verlag, Berlin, Heidelberg, New York, 1981, 255-260 · Zbl 0503.12006
[18] H TSUCHIHASHI, Certain compact complex manifolds with infinite cyclic fundamental groups, Thok Math. J. 39 (1987), 519-532 · Zbl 0635.32016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.