×

Stability conditions for restrictions of vector bundles on projective surfaces. (English) Zbl 1461.14060

The authors introduce a new bound in the restriction theorem of vector bundles to curves embedded to a smooth algebraic surface using the Bridgeland stability conditions.
Suppose that \((X,H)\) is a smooth polarized surface, C is an integral curve on \(X\), and \(E\) is a \(\mu_{H}-\) stable vector bundle of rank \(r \geq 2\) on \(X\). Then \(E|_{C}\) is stable if \[ \frac{C^2}{2H \cdot C } \leq r(r-1)\Delta(E) + \frac{1}{2r(r-1)H^2} \] They do so first by finding a formula for the Chern character of the immersion of a sheaf \(i_{*}F\) on a curve \(C\) embedded to a surface \(X\). Their strategy is as follows: first they use the short exact sequence \(0 \to \mathcal{O}_{X}(-C) \to \mathcal{O}_{X} \to i_{*}\mathcal{O}_{C} \to 0\) and get the desired formula for the Chern character by a simple calculation. Then writing the same SES for an arbitrary divisor \(D\), substracting and adding smooth points \(p \in C\) they get the result for any line bundle. Then they prove the formula for a sheaf \(F\) of a rank one and further proceed by induction to the arbitraty rank. While working with the Bridgeland stability conditions they define a stability condition for \(E, F \in \mathcal{D}^{b}(X), s, t \in \mathbb{R}\) as \(Z_{s,t}(E)=-{\mathrm{ch}_2}^{D+sH}(E) + \frac{t^2H^2}{2}{\mathrm{ch}_{0}}^{D+sH}(E)+iH \cdot {\mathrm{ch}_{1}}^{D+sH}(E)\) and slope, center and a radius of a wall \(W(E,F)\) as \[ \mu_{\sigma}(E)=\frac{(\mu_{H,D}-s)^{2}-t^2-2\Delta_{H,D}(E)}{\mu_{H,F}(E)-s}. \] \[ s_{0}=\frac{1}{2}(\mu_{H,D}(E)+\mu_{H,D}(F))-\frac{\Delta_{H,D}(E)-\Delta_{H,D}(F) }{\mu_{H,D}(E)-\mu_{H,D}(F)} \] \[ \rho_{0}^{2}=(\mu_{H,D}(E)-s)^{2}- 2\Delta_{H,D}(E) \] From the distinguished triangle \(E \to i_{*}E|_{C} \to E(-C)[1] \to E[1]\) in \(\mathcal{D}^{b}(X)\) it clearly follows that if one can find a stability condition \(\sigma=(Z_{t,s}, \mathcal{A}_{s})\) s.t. \(E\) and \(E(-C)[1]\) are \(\sigma\)-stable of the same slope so is \(E|_{C}\). So one should search for a wall \(W(E, E(-C)[1])\). Further they implement this strategy giving a rough approximation of the Gieseker wall (a set of stability conditions \(\sigma\) for which every \((H,D)\)-twisted Gieseker stable sheaf of Chern character \(\textbf{v}\) is \(\sigma\)-stable). More concretely, they show that \(E\) cannot be destabilized by a subobject \(A\) unless the readius of \(W(A,E)\) is smaller than an explicit bound.
For a sheaves on \(\mathbb{P}^{2}\) the sufficient criteria for a \(E|_{C}\), \(C \subset \mathbb{P}^2\) to be stable is given in a similar fashion. Here they show that the wall \(W(E, E(-C)[1])\) is outside the effective wall beyond which the Gieseker semistable bundle is \(\sigma\)-stable. The effective wall was previously computed in the work of I. Coskun et al. [J. Eur. Math. Soc. (JEMS) 19, No. 5, 1421–1467 (2017; Zbl 1373.14042)]. For this they use the theory of exceptional bundles on \(\mathbb{P}^2\) and a fact that every slope of arbitrary sheaf lies on the interval which directly depends on the discriminant \(\Delta_{\textbf{v}}\) of the exceptional sheaf.
The next question studied in the article is the extension of stable vector bundle on \(C\) to a stable vector bundle on \(X\). It is shown that the restriction map \(M_{X,H}(\textbf{v}) \dashrightarrow U_{C}(r, c_1 \cdot C)\) is generically finite and the dimension of the image equals the dimension of \(M_{X,H}(\textbf{v})\).
The cohomologies of vector bundles \(E|_{C}\) are studied in the last part of the article in cases \(X=\mathbb{P}^2\) and \(X\) is a Hirzebruch surface, using the theorems obtained earlier in the article. Firstly they study it on \(\mathbb{P}^{2}\) in the context of the Brill-Noether theory. The first case concerns the plane curves in \(\mathbb{P}^{2}\) using Göttsche-Hirschowitz result. Secondly they study the same questions on the Hirzebruch surfaces using the Coskun-Huizenga results on Brill-Noether theorems and vector bundles on Hirzebruch surfaces.

MSC:

14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli
14H60 Vector bundles on curves and their moduli
14H50 Plane and space curves
14D20 Algebraic moduli problems, moduli of vector bundles
32G13 Complex-analytic moduli problems

Citations:

Zbl 1373.14042

References:

[1] [AB] D. Arcara and A. Bertram, Bridgeland-stable moduli spaces for \(K\)-trivial surfaces, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 1, 1-38. Zentralblatt MATH: 1259.14014
Digital Object Identifier: doi:10.4171/JEMS/354
· Zbl 1259.14014 · doi:10.4171/JEMS/354
[2] [ABCH] D. Arcara, A. Bertram, I. Coskun, and J. Huizenga, The minimal model program for the Hilbert scheme of points on \(\mathbb{P}^2\) and Bridgeland stability, Adv. Math. 235 (2013), 580-626. Zentralblatt MATH: 1267.14023
Digital Object Identifier: doi:10.1016/j.aim.2012.11.018
· Zbl 1267.14023 · doi:10.1016/j.aim.2012.11.018
[3] [Bo] F. A. Bogomolov, Stable vector bundles on projective surfaces, Sb. Math. 81 (1995), no. 2. Zentralblatt MATH: 0838.14036
· Zbl 0838.14036
[4] [Br1] T. Bridgeland, Stability conditions on triangulated categories, Ann. of Math. (2) 166 (2007), no. 2, 317-345. Zentralblatt MATH: 1137.18008
Digital Object Identifier: doi:10.4007/annals.2007.166.317
· Zbl 1137.18008 · doi:10.4007/annals.2007.166.317
[5] [Br3] T. Bridgeland, Stability conditions on \(K3\) surfaces, Duke Math. J. 141 (2008), no. 2, 241-291. Zentralblatt MATH: 1138.14022
Digital Object Identifier: doi:10.1215/S0012-7094-08-14122-5
Project Euclid: euclid.dmj/1200601792
· Zbl 1138.14022 · doi:10.1215/S0012-7094-08-14122-5
[6] [CH1] I. Coskun and J. Huizenga, The nef cone of the moduli space of sheaves and strong Bogomolov inequalities, Israel J. Math. 226 (2018), no. 1, 205-236. Zentralblatt MATH: 1405.14032
Digital Object Identifier: doi:10.1007/s11856-018-1687-z
· Zbl 1405.14032 · doi:10.1007/s11856-018-1687-z
[7] [CH2] I. Coskun and J. Huizenga, Brill-Noether theorems and globally generated vector bundles on Hirzebruch surfaces, arXiv:1705.08460. arXiv: 1705.08460
Zentralblatt MATH: 1440.14202
Digital Object Identifier: doi:10.1017/nmj.2018.17
· Zbl 1440.14202 · doi:10.1017/nmj.2018.17
[8] [CHW] I. Coskun, J. Huizenga, and M. Woolf, The effective cone of moduli spaces of sheaves on the plane, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 5, 1421-1467. Zentralblatt MATH: 1373.14042
Digital Object Identifier: doi:10.4171/JEMS/696
· Zbl 1373.14042 · doi:10.4171/JEMS/696
[9] [D] J.-M. Drézet, Fibrés exceptionnels et variétés de modules de faisceaux semi-stables sur \(\mathbf{P}_2(\mathbf{C})\), J. Reine Angew. Math. 380 (1987), 14-58. · Zbl 0613.14013
[10] [DLP] J.-M. Drézet and J. Le Potier, Fibrés stables et fibrés exceptionnels sur \(\mathbf{P}_2 \), Ann. Sci. Éc. Norm. Supér. (4) 18 (1985), no. 2, 193-243. · Zbl 0586.14007
[11] [F2] S. Feyzbakhsh, Bridgeland Stability conditions, stability of the restricted bundle, Brill-Noether theory, and Mukai’s program, Ph.D. thesis, University of Edinburgh, 2018.
[12] [F1] S. Feyzbakhsh, Stability of restrictions of Lazarsfeld-Mukai bundles via wall-crossing and Mercat’s conjecture, arXiv:1608.07825. arXiv: 1608.07825
[13] [Fl] H. Flenner, Restrictions of semistable bundles on projective varieties, Comment. Math. Helv. 59 (1984), 635-650. Zentralblatt MATH: 0599.14015
Digital Object Identifier: doi:10.1007/BF02566370
· Zbl 0599.14015 · doi:10.1007/BF02566370
[14] [GH] L. Göttsche and A. Hirschowitz, Weak Brill-Noether for vector bundles on the projective plane, Algebraic geometry, Lect. Notes Pure Appl. Math., 200, pp. 63-74, Dekker, New York, 1994. · Zbl 0937.14010
[15] [H] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York, 1977. · Zbl 0367.14001
[16] [HL] D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, second edition, Cambridge Mathematical Library, Cambridge Univ. Press, Cambridge, 2010. Zentralblatt MATH: 1206.14027
· Zbl 1206.14027
[17] [L1] A. Langer, A note on restriction theorems for semistable sheaves, Math. Res. Lett. 17 (2010), no. 5, 823-832. Zentralblatt MATH: 1230.14059
Digital Object Identifier: doi:10.4310/MRL.2010.v17.n5.a2
· Zbl 1230.14059 · doi:10.4310/MRL.2010.v17.n5.a2
[18] [LP] J. Le Potier, Lectures on vector bundles, Cambridge Stud. Adv. Math., 54, Cambridge Univ. Press, Cambridge, 1997. · Zbl 0872.14003
[19] [Mac] A. Maciocia, Computing the walls associated to Bridgeland stability conditions on projective surfaces, Asian J. Math. 18 (2014), no. 2, 263-279. Zentralblatt MATH: 1307.14022
Digital Object Identifier: doi:10.4310/AJM.2014.v18.n2.a5
Project Euclid: euclid.ajm/1409168525
· Zbl 1307.14022 · doi:10.4310/AJM.2014.v18.n2.a5
[20] [Mar] C. Martinez, Duality, Bridgeland wall-crossing and flips of secant varieties, Internat. J. Math. 28 (2017), no. 2, 1750011, 40. Zentralblatt MATH: 1365.14014
Digital Object Identifier: doi:10.1142/S0129167X17500112
· Zbl 1365.14014 · doi:10.1142/S0129167X17500112
[21] [MW] K. Matsuki and R. Wentworth, Mumford-Thaddeus principle on the moduli space of vector bundles on an algebraic surface, Internat. J. Math. 8 (1997), no. 1, 97-148. Zentralblatt MATH: 0879.14002
Digital Object Identifier: doi:10.1142/S0129167X97000068
· Zbl 0879.14002 · doi:10.1142/S0129167X97000068
[22] [MR] V. Mehta and A. Ramanathan, Semistable sheaves on projective varieties and their restriction to curves, Math. Ann. 258 (1982), no. 3, 213-224. Zentralblatt MATH: 0473.14001
Digital Object Identifier: doi:10.1007/BF01450677
· Zbl 0473.14001 · doi:10.1007/BF01450677
[23] [OG] K. O’Grady, Moduli of vector bundles on projective surfaces: some basic results, Invent. Math. 123 (1996), 141-207. Zentralblatt MATH: 0869.14005
Digital Object Identifier: doi:10.1007/BF01232371
· Zbl 0869.14005 · doi:10.1007/BF01232371
[24] [T] Y. · Zbl 1310.14029 · doi:10.1007/s00208-013-0915-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.