×

On reductions of the discrete Kadomtsev-Petviashvili-type equations. (English) Zbl 1382.39002

Summary: The reduction by restricting the spectral parameters \(k\) and \(k^{\prime}\) on a generic algebraic curve of degree \(\mathcal{N}\) is performed for the discrete AKP, BKP and CKP equations, respectively. A variety of two-dimensional discrete integrable systems possessing a more general solution structure arise from the reduction, and in each case a unified formula for the generic positive integer \(\mathcal{N}\geqslant 2\) is given to express the corresponding reduced integrable lattice equations. The obtained extended two-dimensional lattice models give rise to many important integrable partial difference equations as special degenerations. Some new integrable lattice models such as the discrete Sawada-Kotera, Kaup-Kupershmidt and Hirota-Satsuma equations in extended form are given as examples within the framework.

MSC:

39A12 Discrete version of topics in analysis
35Q53 KdV equations (Korteweg-de Vries equations)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)

References:

[1] Adler V E 2011 On a discrete analog of the Tzitzeica equation (arXiv:1103.5139)
[2] Adler V E, Bobenko A I and Suris Yu B 2003 Classification of integrable equations on quad-graphs the consistency approach Commun. Math. Phys.233 513-43 · Zbl 1075.37022 · doi:10.1007/s00220-002-0762-8
[3] Adler V E, Bobenko A I and Suris Yu B 2012 Classification of integrable discrete equations of octahedron type Int. Math. Res. Not.2012 1822-89 · Zbl 1277.39006 · doi:10.1093/imrn/rnr083
[4] Adler V E and Postnikov V V 2011 Differential – difference equations associated with the fractional Lax operators J. Phys. A: Math. Theor.44 415203 · Zbl 1230.34013 · doi:10.1088/1751-8113/44/41/415203
[5] Atkinson J 2011 A multidimensionally consistent version of Hirota’s discrete KdV equation J. Phys. A: Math. Theor.45 222001 · Zbl 1250.35155 · doi:10.1088/1751-8113/45/22/222001
[6] Date E, Jimbo M and Miwa T 1983 Method for generating discrete soliton equations III J. Phys. Soc. Japan52 388-93 · Zbl 0571.35105 · doi:10.1143/JPSJ.52.388
[7] Doliwa A and Santini P M 1997 Multidimensional quadrilateral lattices are integrable Phys. Lett. A 233 365-72 · Zbl 1044.37528 · doi:10.1016/S0375-9601(97)00456-8
[8] Fordy A P and Gibbons J 1980 Some remarkable nonlinear transformations Phys. Lett. A 75 325 · doi:10.1016/0375-9601(80)90829-4
[9] Fordy A P and Gibbons J 1980 Factorization of operators I. Miura transformations J. Math. Phys.21 2508-10 · Zbl 0456.35079 · doi:10.1063/1.524357
[10] Fu W and Nijhoff F W 2017 Direct linearizing transform for three-dimensional discrete integrable systems: the lattice AKP, BKP and CKP equations Proc. R. Soc. A 473 20160915 · Zbl 1404.39004 · doi:10.1098/rspa.2016.0915
[11] Fu W and Nijhoff F W 2017 Linear integral equations, infinite matrices and soliton hierarchies (arXiv:1703.08137)
[12] Hietarinta J 2015 Discrete Boussinesq equations. Integrable Systems Seminar, University of Leeds (https://users.utu.fi/hietarin/leeds2015/)
[13] Hietarinta J, Joshi N and Nijhoff F W 2016 Discrete Systems and Integrability (Cambridge: Cambridge University Press) (https://doi.org/10.1017/CBO9781107337411) · Zbl 1362.37130 · doi:10.1017/CBO9781107337411
[14] Hietarinta J and Zhang D J 2013 Hirota’s method and the search for integrable partial difference equations 1 equations on a 3×3 stencil J. Differ. Equ. Appl.19 1292-316 · Zbl 1273.39006 · doi:10.1080/10236198.2012.740026
[15] Hirota R 1981 Discrete analogue of a generalized Toda equation J. Phys. Soc. Japan50 3785-91 · doi:10.1143/JPSJ.50.3785
[16] Jimbo M and Miwa T 1983 Solitons and infinite dimensional Lie algebras Publ. RIMS19 943-1001 · Zbl 0557.35091 · doi:10.2977/prims/1195182017
[17] Kashaev R M 1996 On discrete three-dimensional equations associated with the local Yang-Baxter relation Lett. Math. Phys.38 389-97 · Zbl 0862.58033 · doi:10.1007/BF01815521
[18] Miwa T 1982 On Hirota’s difference equations Proc. Japan Acad.58A 9-12 · Zbl 0508.39009 · doi:10.3792/pjaa.58.9
[19] Nijhoff F W 1999 Discrete Painlevé equations and symmetry reduction on the lattice Discrete Integrable Geometry and Physics ed A I Bobenko and R Seiler (Oxford: Oxford University Press) pp 237-60
[20] Nijhoff F W, Papageorgiou V G, Capel H W and Quispel G R W 1992 The lattice Gel’fand-Dikii hierarchy Inverse Probl.8 597-621 · Zbl 0763.35083 · doi:10.1088/0266-5611/8/4/010
[21] Nijhoff F W and Walker A J 2001 The discrete and continuous Painlevé VI hierarchy and the Garnier systems Glasgow Math. J.43A 109-23 · Zbl 0990.39015 · doi:10.1017/S0017089501000106
[22] Ovsienko V, Schwartz R and Tabachnikov S 2010 The pentagram map: a discrete integrable system Commun. Math. Phys.299 409-46 · Zbl 1209.37063 · doi:10.1007/s00220-010-1075-y
[23] Schief W K 1999 Self-dual Einstein spaces and a discrete Tzitzeica equation a permutability theorem link Symmetries and Integrability of Difference Equations(Lecture Note Series vol 255) ed P A Clarkson and F W Nijhoff (Cambridge: Cambridge University Press) pp 137-48 · Zbl 0924.35158 · doi:10.1017/CBO9780511569432.012
[24] Schief W K 2003 Lattice geometry of the discrete Darboux, KP, BKP and CKP equations Menelaus’ and Carnot’s theorem J. Nonlinear Math. Phys.10 194-208 (sup 2) · Zbl 1362.39013 · doi:10.2991/jnmp.2003.10.s2.16
[25] Tsarev S P and Wolf T 2009 Hyperdeterminants as integrable discrete systems J. Phys. A: Math. Theor.42 454023 · Zbl 1233.37041 · doi:10.1088/1751-8113/42/45/454023
[26] Tsujimoto S and Hirota R 1996 Pfaffian representation of solutions to the discrete BKP hierarchy in bilinear form J. Phys. Soc. Japan65 2797-806 · Zbl 0948.39007 · doi:10.1143/JPSJ.65.2797
[27] Zakharov V E and Manakov S V 1985 Construction of higher-dimensional nonlinear integrable systems and of their solutions Funct. Anal. Appl.19 89-101 · Zbl 0597.35115 · doi:10.1007/BF01078388
[28] Zhang D J, Zhao S L and Nijhoff F W 2012 Direct linearization of extended lattice BSQ systems Stud. Appl. Math.129 220-48 · Zbl 1256.35188 · doi:10.1111/j.1467-9590.2012.00552.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.