×

A frequency-domain approach for the \(\text P_1\) approximation of time-dependent radiative transfer. (English) Zbl 1319.65126

Summary: We propose a new frequency-domain method to solve the simplified \(\text P_1\) approximation of time-dependent radiative transfer equations. The method employs the Fourier transform and consists of two stages. In the first stage the equations are transformed into an elliptic problem for the frequency variables. The numerical solutions of this problem are approximated using a Galerkin projection method based on the tensor-product B-spline interpolants. In the second stage a Gauss-Hermite quadrature procedure is proposed for the computation of the inverse Fourier transform to recover the numerical solutions of the original simplified \(\text P_1\) problem. The method avoids the discretization of the time variable in the considered system and it accurately resolves all time scales in radiative transfer regimes. Several test examples are used to verify high accuracy, effectiveness and good resolution properties for smooth and discontinuous solutions.

MSC:

65R20 Numerical methods for integral equations
45K05 Integro-partial differential equations
78A40 Waves and radiation in optics and electromagnetic theory
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
65D32 Numerical quadrature and cubature formulas
65D05 Numerical interpolation
Full Text: DOI

References:

[1] Abramowitz, M., Setgun, I.A. (eds.): Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th printing. Dover, New York (1972) · Zbl 0781.65080
[2] Addam, M.: Approximation du problème de diffusion en tomographie optique et problème inverse. Ph.D. thesis, LMPA, Université Lille-Nord de France (2010)
[3] Addam, M., Bouhamidi, A., Jbilou, K.: Signal reconstruction for the diffusion transport equation using tensorial spline Galerkin approximation. Appl. Numer. Math. 62, 1089-1108 (2012) · Zbl 1254.65103
[4] Anile, A.M., Pennisi, S., Sammartino, M.A.: A thermodynamical approach to Eddington factors. J. Math. Phys. 32, 544-550 (1991) · Zbl 0850.76881 · doi:10.1063/1.529391
[5] Backofen, R., Bilz, T., Ribalta, A., Voigt, A.: \[{SP}_N\] SPN-approximations of internal radiation in crystal growth of optical materials. J. Cryst. Growth. 266, 264-270 (2004) · doi:10.1016/j.jcrysgro.2004.02.054
[6] Brunner, T.A., Holloway, J.P.: Two-dimensional time dependent Riemann solvers for neutron transport. J. Comput. Phys. 210, 386-399 (2005) · Zbl 1077.82023
[7] Campbell, G.A., Foster, R.M.: Fourier Integrals for Practical Applications. D. Van Nostrand Company, New York (1948)
[8] Fiveland, W.: The selection of discrete ordinate quadrature sets for anisotropic scattering. ASME HTD. Fundam. Radiat. Heat Transf. 160, 89-96 (1991)
[9] Frank, M., Klar, A., Larsen, E.W., Yasuda, S.: Time-dependent simplified \[{P}_N\] PN approximation to the equations of radiative transfer. J. Comput. Phys. 226, 2289-2305 (2007) · Zbl 1128.65107 · doi:10.1016/j.jcp.2007.07.009
[10] Frank, M., Lang, L., Schäfer, M.: Adaptive finite element simulation of the time-dependent simplified \[{P}_N\] PN equations. J. Sci. Comput. 226, 2289-2305 (2007) · Zbl 1128.65107
[11] Gelbard, E.M.: Simplified spherical harmonics equations and their use in shielding problems. Technical Report WAPD-T-1182, Bettis Atomic Power Laboratory (1961)
[12] Gorpas, D., Yova, D., Politopoulos, K.: A three-dimensional finite elements approach for the coupled radiative transfer equation and diffusion approximation modeling in fluorescence imaging. J. Quant. Spectrosc. Radiat. Transf. 111, 553-568 (2010) · doi:10.1016/j.jqsrt.2009.11.006
[13] Klose, A.D., Larsen, E.W.: Light transport in biological tissue based on the simplified spherical harmonics equations. J. Comput. Phys. 220, 441-470 (2006) · Zbl 1122.78015 · doi:10.1016/j.jcp.2006.07.007
[14] Klose, A.D., Poschinger, T.: Excitation-resolved fluorescence tomography with simplified spherical harmonics equations. Phys. Med. Biol. 56, 1443-1469 (2011) · doi:10.1088/0031-9155/56/5/015
[15] Kotiluoto, P.: Adaptive tree multigrids and simplified spherical harmonics approximation in deterministic neutral and charged particle transport. Ph.D. thesis, University of Helsinki, VTT Technical Research Centre of Finland (2007) · Zbl 0781.65080
[16] Larsen, E., Morel, J., McGhee, J.: Asymptotic derivation of the multigroup \[{P}_1\] P1 and simplified \[{P}_N\] PN equations with anisotropic scattering. Nucl. Sci. Eng. 123, 328-367 (1996)
[17] Larsen, E., Thömmes, G., Klar, A., Seaid, M., Götz, T.: Simplified \[{P}_N\] PN approximations to the equations of radiative heat transfer and applications. J. Comput. Phys. 183, 652-675 (2002) · Zbl 1016.65105 · doi:10.1006/jcph.2002.7210
[18] Larsen, E.W.: Diffusion theory as an asymptotic limit of transport theory for nearly critical systems with small mean free paths. Ann. Nucl. Energy 7, 249-255 (1980) · doi:10.1016/0306-4549(80)90072-9
[19] Lewis, E., Miller, W.: Computational Methods of Neutron Transport. Wiley, New York (1984) · Zbl 0594.65096
[20] Marshak, R.E.: Note on the spherical harmonic method as applied to the milne problem for a sphere. Phys. Rev. 71, 443-446 (1947) · Zbl 0032.37504 · doi:10.1103/PhysRev.71.443
[21] Mihalas, D., Mihalas, B.S.: Foundations of Radiation Hydrodynamics. Oxford University Press, New York (1983) · Zbl 0651.76005
[22] Modest, M.F.: Radiative Heat Transfer. McGraw-Hill, New York (1993)
[23] Pomraning, G.C.: The Equations of Radiation Hydrodynamics. Pregamon press, Oxford (1973)
[24] Sanz-Serna, J.M., Stuart, A.M.: A note on uniform in time error estimates for approximations to reaction-diffusion equations. IMA J. Numer. Anal. 12, 457-462 (1992) · Zbl 0781.65080 · doi:10.1093/imanum/12.3.457
[25] Seaid, M., Klar, A.: Efficient preconditioning of linear systems arising from the discretization of radiative transfer equation. Lect. Notes. Comput. Sci. 35, 211-236 (2003) · Zbl 1043.65068 · doi:10.1007/978-3-642-19014-8_10
[26] Su, B., Olson, G.L.: An analytical benchmark for non-equilibrium radiative transfer in an isotropically scattering medium. Ann. Nucl. Energy 24, 1035-1055 (1997) · doi:10.1016/S0306-4549(96)00100-4
[27] Tarvainen, T., Kolehmainen, V., Arridge, S.R., Kaipio, J.P.: Image reconstruction in diffuse optical tomography using the coupled radiative transport-diffusion model. J. Quant. Spectrosc. Radiat. Transf. 112, 2600-2668 (2011) · doi:10.1016/j.jqsrt.2011.07.008
[28] Teleaga, I., Seaid, M.: Simplified radiative models for low Mach number reactive flows. Appl. Math. Model. 32, 971-991 (2009) · Zbl 1145.80309
[29] Thömmes, G., Pinnau, R., Seaid, M., Götz, T., Klar, A.: Numerical methods and optimal control for glass cooling processes. Transp. Theory Stat. Phys. 31, 513-529 (2002) · Zbl 1011.80003 · doi:10.1081/TT-120015512
[30] Viskanta, R., Anderson, E.E.: Heat transfer in semitransparent solids. Adv. Heat Transf. 11, 317-441 (1975) · doi:10.1016/S0065-2717(08)70077-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.