×

Error estimation of Hermite spectral method for nonlinear partial differential equations. (English) Zbl 0918.65069

A Hermite approximation scheme is constructed for the Burgers equation. First some inverse and imbedding inequalities are derived. The stability and convergence of the proposed scheme is shown. The techniques are also applicable to other nonlinear problems in unbounded domains.

MSC:

65N15 Error bounds for boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Y. Maday, B. Pernaud-Thomas and H. Vandeven, One réhabilitation des méthodes spectrales de type Laguerre, Rech. Aérospat., 6 (1985), 353-379. · Zbl 0604.42026
[2] O. Coulaud, D. Funaro and O. Kavian, Laguerre spectral approximation of elliptic problems in exterior domains, Comput. Methods Appl. Mech. Engrg., 80 (1990), 451-458. CMP 90:17 · Zbl 0734.73090
[3] Daniele Funaro, Estimates of Laguerre spectral projectors in Sobolev spaces, Orthogonal polynomials and their applications (Erice, 1990) IMACS Ann. Comput. Appl. Math., vol. 9, Baltzer, Basel, 1991, pp. 263 – 266. · Zbl 0842.46017
[4] V. Iranzo and A. Falqués, Some spectral approximations for differential equations in unbounded domains, Comput. Methods Appl. Mech. Engrg. 98 (1992), no. 1, 105 – 126. · Zbl 0762.76081 · doi:10.1016/0045-7825(92)90171-F
[5] Cathy Mavriplis, Laguerre polynomials for infinite-domain spectral elements, J. Comput. Phys. 80 (1989), no. 2, 480 – 488. · Zbl 0665.65066 · doi:10.1016/0021-9991(89)90112-5
[6] K. Black, Spectral elements on infinite domains (unpublished). · Zbl 0929.65087
[7] Daniele Funaro and Otared Kavian, Approximation of some diffusion evolution equations in unbounded domains by Hermite functions, Math. Comp. 57 (1991), no. 196, 597 – 619. · Zbl 0764.35007
[8] J. A. C. Weideman, The eigenvalues of Hermite and rational spectral differentiation matrices, Numer. Math. 61 (1992), no. 3, 409 – 432. · Zbl 0741.65078 · doi:10.1007/BF01385518
[9] C. I. Christov, A complete orthonormal system of functions in \?²(-\infty ,\infty ) space, SIAM J. Appl. Math. 42 (1982), no. 6, 1337 – 1344. · Zbl 0562.33009 · doi:10.1137/0142093
[10] John P. Boyd, Spectral methods using rational basis functions on an infinite interval, J. Comput. Phys. 69 (1987), no. 1, 112 – 142. · Zbl 0615.65090 · doi:10.1016/0021-9991(87)90158-6
[11] Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. · Zbl 0314.46030
[12] R. J. Nessel and G. Wilmes, On Nikolskii-type inequalities for orthogonal expansion, in Approximation Theory II , ed. by G. G. Lorentz, C. K. Chui and L. L. Schumaker, Academic Press, New York, 479-484. · Zbl 0347.42015
[13] R. Courant, K. O. Friedrichs and H. Lewy, \(\ddot \mathrm{ U}\)ber die partiellen differezengleichungen der mathematischen physik, Math. Ann., 100 (1928), 32-74.
[14] Pên Yü Kuo, A certain class of finite difference schemes for the two-dimensional vorticity equation of a viscous fluid, Acta Math. Sinica 17 (1974), no. 4, 242 – 258 (Chinese).
[15] Ben Yu Guo, Generalized stability of discretization and its applications to numerical solutions of nonlinear differential equations, Computational mathematics in China, Contemp. Math., vol. 163, Amer. Math. Soc., Providence, RI, 1994, pp. 33 – 54. · Zbl 0811.65071 · doi:10.1090/conm/163/01548
[16] Hans J. Stetter, Stability of nonlinear discretization algorithms, Numerical Solution of Partial Differential Equations (Proc. Sympos. Univ. Maryland, 1965) Academic Press, New York, 1966, pp. 111 – 123.
[17] G. H. Hardy, J. E. Littlewood and G.Pólya, Inequalities, 2’ed., Cambridge University Press, Cambridge, 1952. · Zbl 0047.05302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.