×

Global existence and decay rates of solutions to the viscous water-waves system. (English) Zbl 1496.35276

Summary: In this paper, we analyze a nonlinear model of the viscous water-waves equation proposed in [F. Dias et al., Phys. Lett., A 372, No. 8, 1297–1302 (2008; Zbl 1217.76018)]. To this end, we first study the linear model in [loc. cit.]. We then derive a new model which approximates the nonlinear model in [loc. cit.]. We finally show the existence of a unique global-in-time solution and its decay rates to this new system with small initial data in energy spaces.

MSC:

35Q30 Navier-Stokes equations
35Q35 PDEs in connection with fluid mechanics
76D27 Other free boundary flows; Hele-Shaw flows
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

Citations:

Zbl 1217.76018
Full Text: DOI

References:

[1] Ambrose, D.; Bona, J.; Nicholls, D., Well-posedness of a model for water waves with viscosity, Discrete Contin. Dyn. Syst. Ser. B, 17, 4, 1113-1137 (2012) · Zbl 1238.35093
[2] Bae, H., Solvability of the free boundary value problem of the Navier-Stokes equations, Discrete Contin. Dyn. Syst., 29, 3, 769-801 (2011) · Zbl 1222.35215
[3] Beale, T., Large time regularity of viscous surface waves, Arch. Ration. Mech. Anal., 84, 4, 307-352 (1983) · Zbl 0545.76029
[4] Coutand, D.; Shkoller, S., Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., 20, 3, 829-930 (2007) · Zbl 1123.35038
[5] Craig, W.; Schanz, U.; Sulem, C., The modulational regime of three-dimensional water waves and the Davey-Stewartson system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14, 5, 615-667 (1997) · Zbl 0892.76008
[6] Dias, F.; Dyachenko, A. I.; Zakharov, V. E., Theory of weakly damped free-surface flows: A new formulation based on potential flow solutions, Phys. Lett. A, 372, 1297-1302 (2008) · Zbl 1217.76018
[7] Dutykh, D.; Dias, F., Viscous potential free-surface flows in a fluid layer of finite depth, C. R. Math. Acad. Sci. Paris, 345, 2, 113-118 (2007) · Zbl 1117.76023
[8] Germain, P.; Masmoudi, N.; Shatah, J., Global solutions for the gravity water waves equation in dimension 3, Ann. of Math. (2), 175, 2, 691-754 (2012) · Zbl 1241.35003
[9] Granero-Belinchón, R.; Scrobogna, S., Models for damped water waves, SIAM J. Appl. Math., 79, 6, 2530-2550 (2019) · Zbl 1431.35126
[10] Guo, Y.; Tice, I., Almost exponential decay of periodic viscous surface waves without surface tension, Arch. Ration. Mech. Anal., 207, 2, 459-531 (2013) · Zbl 1320.35259
[11] Guo, Y.; Tice, I., Decay of viscous surface waves without surface tension in horizontally infinite domains, Anal. PDE, 6, 6, 1429-1533 (2013) · Zbl 1292.35206
[12] Guo, Y.; Tice, I., Local well-posedness of the viscous surface wave problem without surface tension, Anal. PDE, 6, 2, 287-369 (2013) · Zbl 1273.35209
[13] Joseph, D. D., Potential flow of viscous fluids: Historical notes, Int. J. Multiph. Flow., 32, 285-310 (2016) · Zbl 1135.76451
[14] Joseph, D. D.; Wang, J., The dissipation approximation and viscous potential flow, J. Fluid Mech., 505, 365-377 (2004) · Zbl 1062.76053
[15] Kato, T.; Ponce, G., Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41, 7, 891-907 (1988) · Zbl 0671.35066
[16] Lamb, H., (Hydrodynamics. Hydrodynamics, Cambridge Mathematical Library (1993), Cambridge University Press: Cambridge University Press Cambridge), xxvi+738, Reprint of the 1932 sixth edition · Zbl 0828.01012
[17] Li, D., On Kato-Ponce and fractional Leibniz, Rev. Mat. Iberoam., 35, 1, 23-100 (2019) · Zbl 1412.35261
[18] Majda, A.; Bertozzi, A., (Vorticity and Incompressible Flow. Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, vol. 27 (2002), Cambridge University Press: Cambridge University Press Cambridge), xii+545 · Zbl 0983.76001
[19] Shatah, J.; Zeng, C., Geometry and a priori estimates for free boundary problems of the Euler equation, Comm. Pure Appl. Math., 61, 5, 698-744 (2008) · Zbl 1174.76001
[20] Shatah, J.; Zeng, C., A priori estimates for fluid interface problems, Comm. Pure Appl. Math., 61, 6, 848-876 (2008) · Zbl 1143.35347
[21] Solonnikov, V., Unsteady motion of a finite mass of fluid, bounded by a free surface, J. Soviet Math., 40, 672-686 (1988) · Zbl 0639.76035
[22] Solonnikov, V., Unsteady motion of an isolated volume of a viscous incompressible fluid, Math. USSR-Izv., 31, 381-405 (1988) · Zbl 0850.76180
[23] Stokes, G. G., On the effect of the internal friction of fluids on the motion of pendulums, (Trans. Cambridge Phil. Soc. IX (1851)), 8-106, (read on December 9, 1850)
[24] Taylor, M., (Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials. Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Mathematical Surveys and Monographs, vol. 81 (2000), American Mathematical Society: American Mathematical Society Providence, RI), x+257 · Zbl 0963.35211
[25] Wu, S., Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math., 130, 1, 39-72 (1997) · Zbl 0892.76009
[26] Wu, S., Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc., 12, 2, 445-495 (1999) · Zbl 0921.76017
[27] Wu, S., Almost global well-posedness of the 2-D full water wave problem, Invent. Math., 177, 1, 45-135 (2009) · Zbl 1181.35205
[28] Wu, S., Global well-posedness of the 3-D full water wave problem, Invent. Math., 184, 1, 125-220 (2011) · Zbl 1221.35304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.