×

On the average box dimensions of graphs of typical continuous functions. (English) Zbl 1413.28006

For a bounded set \(E\subseteq \mathbb{R}^m\) and \(\delta >0\) let \(N_\delta(E)\) be the number of \(\delta\)-mesh cubes that intersect \(E\) and \(\Delta(E,\delta)=\frac{\log N_\delta(E)}{-\log\delta}\). The lower and upper box dimensions are defined by \(\underline{\dim}_B (E)=\liminf_{\delta\searrow 0}\Delta(E,\delta)\) and \(\overline{\dim}_B (E)=\limsup_{\delta\searrow 0}\Delta(E,\delta)\). Let \(X\) be a bounded subset of \(\mathbb{R}^d\) and \(C_u(X)\) the Banach space of all uniformly continuous real-valued functions on \(X\) equipped with the uniform norm \(\|\;\|_\infty\). It is known that \(\underline{\dim}_B(X)\leq \underline{\dim}_B(\text{graph}(f))\leq \overline{\dim}_B(\text{graph}(f))\leq \overline{\dim}_B(X)+1\) for \(f\in C_u(X)\) and \(\underline{\dim}_B(\text{graph}(f))=\underline{\dim}_B(X)\) for a typical function \(f\in C_u(X)\); moreover, if \(X\) has no isolated points, then \(\overline{\dim}_B(\text{graph}(f))=\overline{\dim}_B(X)+1\) for a typical function \(f\in C_u(X)\). Here the authors say that a typical function \(f\in C_u(X)\) has the property \(P\) if \(\{f\in C_u(X): f \text{ has property } P\}\) is co-meager. The aim of the paper is to show: “not only is the box counting function \(\Lambda_f(\delta):=\Delta(\text{graph}(f),\delta)\) divergent as \(\delta\searrow 0\), but it is so irregular that it remains spectacularly divergent as \(\delta\searrow 0\) even after being “averaged”. The authors illustrate their very general results by the following particular case: Define \(\Lambda_f^n(t)\) inductively by \(\Lambda_f^0(t)=\Lambda_f(e^{-t})\), \(\Lambda_f^n(t)=\frac{1}{t}\int_1^t\Lambda_f^{n-1}(s)ds\). Then a typical continuous function \(f:[0,1]^d\rightarrow\mathbb{R}\) satisfies \(\liminf_{t\rightarrow\infty}\Lambda_f^n(t)=d\), \(\limsup_{t\rightarrow\infty}\Lambda_f^n(t)=d+1\) for all \(n\in\mathbb{N}\cup \{0\}\).
Reviewer: Hans Weber (Udine)

MSC:

28A78 Hausdorff and packing measures
28A80 Fractals

References:

[1] Aaronson, J., Denker, M., Fisher, A.: Second order ergodic theorems for ergodic transformations of infinite measure spaces. Proc. Amer. Math. Soc. 114, 115–127 (1992) · doi:10.1090/S0002-9939-1992-1099339-4
[2] Bedford, T., Fisher, A.: Analogues of the Lebesgue density theorem for fractal sets of reals and integers. Proc. London Math. Soc. 64, 95–124 (1992) · doi:10.1112/plms/s3-64.1.95
[3] N. L. Carothers, Real Analysis, Cambridge University Press (Cambridge, 2000)
[4] K. J. Falconer, Fractal Geometry, John Wiley & Sons, Ltd. (Chichester, 1989)
[5] Fisher, A.: Integer Cantor sets and an order-two ergodic theorem. Ergodic Theory Dynam. Systems 13, 45–64 (1993) · doi:10.1017/S0143385700007197
[6] A. Fisher, A pathwise Central Limit Theorem for random walks, Ann. Probab. (to appear)
[7] Graf, S.: On Bandt’s tangential distribution for self-similar measures. Monatsh. Math. 120, 223–246 (1995) · doi:10.1007/BF01294859
[8] G. H. Hardy, Divergent Series, Clarendon Press (Oxford, 1949)
[9] P. Humke and G. Petruska, The packing dimension of a typical continuous function is \(2\)2, Real Anal. Exchange, 14 (1988/89), 345–358
[10] Hyde, J., Laschos, V., Olsen, L., Petrykiewicz, I., Shaw, A.: On the box dimensions of graphs of typical continuous functions. J. Math. Anal. Appl. 391, 567–581 (2012) · doi:10.1016/j.jmaa.2012.02.044
[11] Jacob, M.: Über die Äquivalenz der Cesaroschen und der Hölderschen Mittel für Integrale bei gleicher reeller Ordnung \(k>0\)k>0. Math. Z. 26, 672–682 (1927) · doi:10.1007/BF01475480
[12] Mauldin, R.D., Williams, S.C.: On the Hausdorff dimension of some graphs. Trans. Amer. Math. Soc. 298, 793–803 (1986) · doi:10.1090/S0002-9947-1986-0860394-7
[13] Mörters, P.: Average densities and linear rectifiability of measures. Mathematika 44, 313–324 (1997) · doi:10.1112/S0025579300012626
[14] Mörters, P.: Symmetry properties of average densities and tangent measure distributions of measures on the line. Adv. in Appl. Math. 21, 146–179 (1998) · doi:10.1006/aama.1998.0592
[15] Mörters, P.: The average density of the path of planar Brownian motion. Stochastic Process. Appl. 74, 133–149 (1998) · doi:10.1016/S0304-4149(97)00118-X
[16] J. Oxtoby, Measure and Category. A Survey of the Analogies between Topological and Measure Spaces, Graduate Texts in Mathematics, Vol. 2, Springer-Verlag (New York–Berlin, 1971)
[17] G. F. Simmons, Introduction to Topology and Modern Analysis, Krieger Pub. (2003)
[18] D. Stroock, Essentials of Integration Theory for Analysis, Springer-Verlag (2011)
[19] Zähle, M.: The average density of self-conformal measures. J. London Math. Soc. 63, 721–734 (2001) · doi:10.1017/S0024610701002009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.