×

Homogenization of multivalued partial differential equations via reflected backward stochastic differential equations. (English) Zbl 1037.60059

The authors study the convergence for the viscosity solution \(u^{\varepsilon}:[0,T]\times \mathbb R^{k}\to \mathbb R^{k}\) of the variational inequality \[ -\partial_{t}u^{\varepsilon}( t,x) -L_{\varepsilon}u^{\varepsilon}( t,x) -f(x,u^{\varepsilon}(t,x))\in(\partial\varphi) (u^{\varepsilon}(t,x)), \] \(u^{\varepsilon}( t,x) \in\overline{ \text{Dom} (\varphi)}\), \(t\in [0,T]\), \(~u^{\varepsilon}(0,x) =g(x)\), \(x\in \mathbb R\), when \(\varepsilon\downarrow0\). Here \(\partial\varphi\) denotes the subdifferential of the lower semi-continuous, proper convex function \(\varphi:\mathbb R^{k} \to(-\infty,+\infty]\) and \(L_{\varepsilon}\) is the generator of a \(d\)-dimensional diffusion process \(X^{\varepsilon}\) which converges in law to some diffusion process \(X\) with generator \(L\). They prove that, under suitable assumptions on the coefficients, there is a limit function \(u\) that satisfies the same variational inequality as \(u^{\varepsilon}\), only with \(L_{\varepsilon}\) replaced by \(L\). For this they use the generalized Feynman-Kac formula \(u^{\varepsilon}(t,x)=Y_{t}^{\varepsilon}(t,x)\) associating \(u^{\varepsilon}\) to the solution \((X^{\varepsilon},Y^{\varepsilon },K^{\varepsilon})\) of a reflected backward stochastic differential equation [see E. Pardoux and A. Răşcanu, Stochastic Processes Appl. 76, 191–215 (1998; Zbl 0932.60070)] and show the convergence in law of \((X^{\varepsilon},Y^{\varepsilon},K^{\varepsilon})\) to the solution of a reflected backward equation driven by \(X\).
The proof of this convergence is based on a double approximation scheme: the Yosida approximation for the reflection term and the usual homogenization approximation, see E. Pardoux and Yu. A. Veretennikov [Stochastics Stochastics Rep. 60, 255–270 (1997; Zbl 0891.60053)]. Finally, under the assumption of smoothness on the coefficients of the \(X^{\varepsilon}\)’s and for \(k=1\), the convergence result is also obtained in the case of semi-linear PDEs with solution in Sobolev sense.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
35K85 Unilateral problems for linear parabolic equations and variational inequalities with linear parabolic operators
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
Full Text: DOI

References:

[1] Barles G., Pitman Research Notes in Math. Series 364, in: Bakward Stochastic Differential Equations (1997)
[2] Barbu V., East European Series, in: Mathematics and Its Applications (1986)
[3] Bensoussan A., Asymptotic Analysis for Periodic Structure (1978)
[4] Billingsley P., Convergence of Probability Measures (1968) · Zbl 0172.21201
[5] DOI: 10.1007/s000300050010 · Zbl 0953.35017 · doi:10.1007/s000300050010
[6] DOI: 10.1111/1467-9965.00022 · Zbl 0884.90035 · doi:10.1111/1467-9965.00022
[7] Freidlin M., Teor. Veoj. i Primenen 9 pp 133– (1964)
[8] Gaudron G., Ann. Inst. Henri Poincaré 37 (1) pp 1– (2001) · Zbl 0986.60063 · doi:10.1016/S0246-0203(00)01058-X
[9] DOI: 10.1016/0167-6911(94)00011-J · Zbl 0877.93125 · doi:10.1016/0167-6911(94)00011-J
[10] DOI: 10.1214/aop/1176990333 · Zbl 0742.60036 · doi:10.1214/aop/1176990333
[11] Meyer P.A., Ann. Inst. Henri Poincaré 20 pp 353– (1984)
[12] Ouknine Y., Stoch. Stoch. Reports 65 pp 111– (1999) · Zbl 0918.60046 · doi:10.1080/17442509808834175
[13] DOI: 10.1006/jfan.1999.3441 · Zbl 0935.35010 · doi:10.1006/jfan.1999.3441
[14] DOI: 10.1007/978-1-4612-2022-0_2 · doi:10.1007/978-1-4612-2022-0_2
[15] DOI: 10.1016/0167-6911(90)90082-6 · Zbl 0692.93064 · doi:10.1016/0167-6911(90)90082-6
[16] DOI: 10.1016/S0304-4149(98)00030-1 · Zbl 0932.60070 · doi:10.1016/S0304-4149(98)00030-1
[17] Pardoux E., Stochastics 60 pp 255– (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.