×

Implicit purification for temperature-dependent density matrices. (English) Zbl 1243.81244

Summary: An implicit purification scheme is proposed for calculation of the temperature-dependent, grand canonical single-particle density matrix, given as a Fermi-Dirac operator expansion in terms of the Hamiltonian. The computational complexity is shown to scale with the logarithm of the polynomial order of the expansion, or equivalently, with the logarithm of the inverse temperature. The system of linear equations that arise in each implicit purification iteration is solved efficiently by a conjugate gradient solver. The scheme is particularly useful in connection with linear scaling electronic structure theory based on sparse matrix algebra. The efficiency of the implicit temperature expansion technique is analyzed and compared to some explicit purification methods for the zero temperature density matrix.

MSC:

81V70 Many-body theory; quantum Hall effect
65F60 Numerical computation of matrix exponential and similar matrix functions

References:

[1] S. Goedecker, Rev. Mod. Phys. 71 pp 1085– (1999) · doi:10.1103/RevModPhys.71.1085
[2] S.Y. Wu, Phys. Rep. 358 pp 1– (2002) · Zbl 0989.81146 · doi:10.1016/S0370-1573(01)00035-7
[3] X.-P. Li, Phys. Rev. B 47 pp 10– (1993)
[4] W. Kohn, Phys. Rev. Lett. 76 pp 3168– (1996) · doi:10.1103/PhysRevLett.76.3168
[5] R. McWeeny, Rev. Mod. Phys. 32 pp 335– (1960) · Zbl 0092.23201 · doi:10.1103/RevModPhys.32.335
[6] W.L. Clinton, Phys. Rev. 177 pp 7– (1969) · doi:10.1103/PhysRev.177.7
[7] A.H.R. Palser, Phys. Rev. B 58 pp 12– (1998) · doi:10.1103/PhysRevB.58.12
[8] A. Holas, Chem. Phys. Lett. 340 pp 552– (2001) · doi:10.1016/S0009-2614(01)00409-2
[9] A.M.N. Niklasson, Phys. Rev. B 66 pp 155120– (2002) · doi:10.1103/PhysRevB.66.155120
[10] A.M.N. Niklasson, Phys. Rev. B 66 pp 155115– (2002) · doi:10.1103/PhysRevB.66.155115
[11] A.M.N. Niklasson, J. Chem. Phys. 118 pp 8611– (2003) · doi:10.1063/1.1559913
[12] S. Goedecker, Phys. Rev. Lett. 73 pp 122– (1994) · doi:10.1103/PhysRevLett.73.122
[13] R.N. Silver, Int. J. Mod. Phys. C 5 pp 735– (1994) · doi:10.1142/S0129183194000842
[14] L.W. Wang, Phys. Rev. B 49 pp 10– (1994)
[15] R.N. Silver, J. Chem. Phys. 124 pp 115– (1996)
[16] R. Baer, J. Chem. Phys. 107 pp 10003– (1997) · doi:10.1063/1.474158
[17] A. Liang, J. Chem. Phys. 119 pp 4117– (2003) · doi:10.1063/1.1590632
[18] M. Challacombe, J. Chem. Phys. 110 pp 2332– (1999) · doi:10.1063/1.477969
[19] D.R. Bowler, Comput. Phys. Commun. 120 pp 95– (1999) · Zbl 0996.81530 · doi:10.1016/S0010-4655(99)00221-0
[20] T. Helgaker, Chem. Phys. Lett. 327 pp 397– (2000) · doi:10.1016/S0009-2614(00)00814-9
[21] M. Head-Gordon, Mol. Phys. 101 pp 37– (2003) · doi:10.1080/00268970210158722
[22] Y.H. Shao, J. Chem. Phys. 118 pp 6144– (2003) · doi:10.1063/1.1558476
[23] A.D. Daniels, J. Chem. Phys. 110 pp 1321– (1999) · doi:10.1063/1.478008
[24] M.S. Paterson, SIAM J. Comput. 2 pp 60– (1973) · Zbl 0262.65033 · doi:10.1137/0202007
[25] C. Moler, SIAM Rev. 45 pp 3– (2003) · Zbl 1030.65029 · doi:10.1137/S00361445024180
[26] M.R. Hestenes, J. Res. Natl. Bur. Stand. 49 pp 409– (1952)
[27] M. Benzi, SIAM J. Sci. Comput. (USA) 17 pp 1135– (1996) · Zbl 0856.65019 · doi:10.1137/S1064827594271421
[28] C.S. Kenney, SIAM J. Matrix Anal. Appl. 2 pp 273– (1991) · Zbl 0725.65048 · doi:10.1137/0612020
[29] G. Beylkin, J. Comput. Phys. 152 pp 32– (1999) · Zbl 0945.65049 · doi:10.1006/jcph.1999.6215
[30] S. Goedecker, Phys. Rev. B 48 pp 17– (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.