×

Stochastic properties of many-body systems. (English) Zbl 0988.81145

Summary: The \(k\)-body embedded ensembles of random matrices originally defined by Mon and French are investigated as paradigmatic models of stochasticity in Fermionic many-body systems. In these ensembles, \(m\) Fermions in \(l\) degenerate single-particle states, interact via a random \(k\)-body interaction which obeys unitary or orthogonal symmetry. We focus attention on the spectral properties of these ensembles. We always take the limit \(l\rightarrow\infty\). For \(2k>m\), the spectral properties of the \(k\)-body embedded unitary and orthogonal ensembles coincide with those of the canonical Gaussian unitary and orthogonal random-matrix ensemble, respectively. For \(k\ll m\ll l\), the spectral fluctuations become Poissonian. The reason for this behavior is displayed by constructing limiting ensembles. The case of embedded Bosonic ensembles (\(m\) Bosons in \(l\) degenerate single-particle states interact via a random \(k\)-body interaction which obeys unitary or orthogonal symmetry) is also considered and compared with the case of Fermions.

MSC:

81V70 Many-body theory; quantum Hall effect
81S25 Quantum stochastic calculus
Full Text: DOI

References:

[1] Guhr, T.; Müller-Groeling, A.; Weidenmüller, H. A., Phys. Rep., 299, 189 (1998)
[2] French, J. B.; Wong, S. S.M., Phys. Lett. B, 35, 5 (1971)
[3] Bohigas, O.; Flores, J., Phys. Lett. B, 35, 383 (1971)
[4] Flambaum, V. V.; Izrailev, F. M.; Casati, G., Phys. Rev. E, 54, 2136 (1996)
[5] Altshuler, B., Phys. Rev. Lett., 78, 2803 (1997)
[6] V.K.B. Kota, Physics Reports 41 (2001) 436.; V.K.B. Kota, Physics Reports 41 (2001) 436.
[7] Gergeot, B.; Shepelyansky, D., Phys. Rev. Lett., 81, 5129 (1998)
[8] Johnson, C. W.; Bertsch, G. F.; Dean, D. J., Phys. Rev. Lett., 80, 2749 (1998)
[9] T. Rupp, H.A. Weidenmüller, J. Richert, Phys. Lett. B 483 (2000) 331.; T. Rupp, H.A. Weidenmüller, J. Richert, Phys. Lett. B 483 (2000) 331.
[10] Mon, K. K.; French, J. B., Ann. Phys. (NY), 95, 90 (1975)
[11] Brody, T. A., Rev. Mod. Phys., 53, 385 (1981)
[12] Verbaarschot, J. J.M.; Zirnbauer, M. R., Ann. Phys. (NY), 158, 78 (1984)
[13] L. Benet, T. Rupp, H.A. Weidenmüller, cond-mat/0010425 and Phys. Rev. Lett. 87 (2001) 101601-1, cond-mat/0010426 and Ann. Phys. (NY) 292 (2001) 67.; L. Benet, T. Rupp, H.A. Weidenmüller, cond-mat/0010425 and Phys. Rev. Lett. 87 (2001) 101601-1, cond-mat/0010426 and Ann. Phys. (NY) 292 (2001) 67.
[14] T. Asaga, L. Benet, T. Rupp, H.A. Weidenmüller, cond-mat/0107363 and cond-mat/0107364.; T. Asaga, L. Benet, T. Rupp, H.A. Weidenmüller, cond-mat/0107363 and cond-mat/0107364.
[15] Efetov, K. B., Adv. Phys., 32, 53 (1983)
[16] Verbaarschot, J. J.M.; Weidenmüller, H. A.; Zirnbauer, M. R., Phys. Rep., 129, 367 (1985)
[17] Z. Pluhař, H.A. Weidenmüller, Ann. Phys. (NY), submitted.; Z. Pluhař, H.A. Weidenmüller, Ann. Phys. (NY), submitted.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.