×

Computations in quantum tensor networks. (English) Zbl 1259.81088

Summary: The computation of the ground state (i.e. the eigenvector related to the smallest eigenvalue) is an important task in the simulation of quantum many-body systems. As the dimension of the underlying vector space grows exponentially in the number of particles, one has to consider appropriate subsets promising both convenient approximation properties and efficient computations. The variational ansatz for this numerical approach leads to the minimization of the Rayleigh quotient. The “alternating least squares technique” is then applied to break down the eigenvector computation to problems of appropriate size, which can be solved by classical methods. Efficient computations require fast computation of the matrix-vector product and of the inner product of two decomposed vectors. To this end, both appropriate representations of vectors and efficient contraction schemes are needed.
Here approaches from many-body quantum physics for one-dimensional and two-dimensional systems (“matrix product states” and “projected entangled pair states”) are treated mathematically in terms of tensors. We give the definition of these concepts, bring some results concerning uniqueness and numerical stability and show how computations can be executed efficiently within these concepts. Based on this overview we present some modifications and generalizations of these concepts and show that they still allow efficient computations such as applicable contraction schemes. In this context we consider the minimization of the Rayleigh quotient in terms of the PARAFAC (CP) formalism, where we also allow different tensor partitions. This approach makes use of efficient contraction schemes for the calculation of inner products in a way that can easily be extended to the mps format but also to higher-dimensional problems.

MSC:

81V70 Many-body theory; quantum Hall effect
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
68U20 Simulation (MSC2010)
49S05 Variational principles of physics
93E24 Least squares and related methods for stochastic control systems
82B80 Numerical methods in equilibrium statistical mechanics (MSC2010)

References:

[1] Dawson, C.; Eisert, J.; Osborne, T. J., Unifying variational methods for simulating quantum many-body systems, Phys. Rev. Lett., 100, 130501 (2008) · Zbl 1228.82080
[2] ALPS Consortium, The ALPS project (Algorithms and Libraries for Physics Simulations) is an open source effort aiming at providing high-end simulation codes for strongly correlated quantum mechanical systems as well as C++ libraries for simplifying the development of such code. Available from: <http://alps.compphys.org/mediawiki/index.php/Main-Page>.
[3] García-Ripoll, J. J., Time evolution of matrix product states, New J. Phys., 8, 305 (2006)
[4] Pirvu, B.; Murg, V.; Cirac, J. I.; Verstraete, F., Matrix product operator representations, New J. Phys., 12, 025012 (2010), Available from: <http://dx.doi.org/10.1088/1367-2630/12/2/025012> · Zbl 1360.81116
[5] Verstraete, F.; Cirac, I.; Murg, V., Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems, Adv. Phys., 57, 143-224 (2008)
[6] Nakahara, M.; Ohmi, T., Quantum Computing: From Linear Algebra to Physical Realizations (2008), CRC Press · Zbl 1185.81004
[7] Pfeuty, P., The one-dimensional Ising model with a transverse field, Ann. Phys., 57, 79-90 (1970)
[8] Lieb, E.; Schultz, T.; Mattis, D., Two soluble models of an antiferromagnetic chain, Ann. Phys., 16, 407-466 (1961) · Zbl 0129.46401
[9] Affleck, I.; Kennedy, T.; Lieb, E. H.; Tasaki, H., Rigorous results on valence-bond ground states in antiferromagnets, Phys. Rev. Lett., 59, 799-802 (1987)
[10] Davis, P. J., Circulant Matrices (1994), AMS Chelsea Publishing · Zbl 0898.15021
[11] Capizzano, S. S.; Tyrtyshnikov, E., Any circulant-like preconditioner for multilevel matrices is not superlinear, SIAM J. Matrix Anal. Appl., 21, 431-439 (2000) · Zbl 0952.65037
[12] Cantoni, A.; Butler, P., Properties of the eigenvectors of persymmetric matrices with applications to communication theory, IEEE Trans. Commun., 24, 804-809 (1976) · Zbl 0351.94001
[13] Plenio, M.; Eisert, J.; Dreissig, J.; Cramer, M., Entropy, entanglement, and area: analytical results for harmonic lattice systems, Phys. Rev. Lett., 94, 060503 (2005)
[14] Cramer, M.; Eisert, J.; Plenio, M.; Dreissig, J., Entanglement-area law for general bosonic harmonic lattice systems, Phys. Rev. A, 73, 012309 (2006)
[15] Wolf, M.; Verstraete, F.; Hastings, M. B.; Cirac, I., Area laws in quantum systems: mutual information and correlations, Phys. Rev. Lett., 100, 070502 (2008) · Zbl 1228.81112
[16] Eisert, J.; Cramer, M.; Plenio, M. B., Area laws for the entanglement entropy, Rev. Mod. Phys., 82, 277-306 (2010) · Zbl 1205.81035
[17] Hastings, M. B., An area law for one-dimensional quantum systems, J. Stat. Mech. Theory Exp., 2007, P08024 (2007) · Zbl 1456.82046
[18] Hastings, M. B., Entropy and entanglement in quantum ground states, Phys. Rev. B, 76, 035144 (2007)
[19] Verstraete, F.; Cirac, J. I., Matrix product states represent ground states faithfully, Phys. Rev. B, 73, 094423 (2006)
[20] Schuch, N.; Cirac, I., Matrix product state and mean field solutions for one-dimensional systems can be found efficiently, Phys. Rev. A, 82, 012314 (2010)
[21] Fannes, M.; Nachtergaele, B.; Werner, R., Abundance of translation invariant pure states on quantum spin chains, Lett. Math. Phys., 25, 249-258 (1992) · Zbl 0779.46047
[22] Fannes, M.; Nachtergaele, B.; Werner, R. F., Finitely correlated states on quantum spin chains, Commun. Math. Phys., 144, 443-490 (1992) · Zbl 0755.46039
[23] (Peschel, I.; Wang, X.; Kaulke, M.; Hallberg, K., Density-Matrix Renormalization: A New Numerical Method in Physics. Density-Matrix Renormalization: A New Numerical Method in Physics, Lecture Notes in Physics, vol. 528 (1999), Springer: Springer Berlin) · Zbl 0919.00085
[24] Schollwöck, U., The Density-Matrix Renormalization Group, Rev. Mod. Phys., 77, 259-315 (2005) · Zbl 1205.82073
[25] Verstraete, F.; Cirac, J. I., Valence-bond states for quantum computation, Phys. Rev. A, 70, 060302 (2004)
[26] F.Verstraete, J.I. Cirac, Renormalization algorithms for quantum-many body systems in two and higher dimensions, 2004. Available from: <http://arXiv.org:cond-mat/0407066>.
[27] Anders, S.; Plenio, M. B.; Dür, W.; Verstraete, F.; Briegel, H. J., Ground-state approximation for strongly interacting spin systems in arbitrary spatial dimension, Phys. Rev. Lett., 97, 107206 (2006)
[28] Vidal, G., Entanglement renormalization, Phys. Rev. Lett., 99, 220405 (2007)
[29] Schuch, N.; Wolf, M.; Verstraete, F.; Cirac, I., Strings, projected entangled pair states, and variational monte carlo methods, Phys. Rev. Lett., 100, 040501 (2008)
[30] Hübner, R.; Kruszynska, C.; Hartmann, L.; Dür, W.; Verstraete, F.; Eisert, J.; Plenio, M., Renormalisation algorithm with graph enhancement, Phys. Rev. A, 79, 022317 (2009)
[31] Horn, R.; Johnson, C., Matrix Analysis (1987), Cambridge University Press: Cambridge University Press Cambridge
[32] Carroll, J.; Chang, J. J., Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition, Psychometrika, 35, 283-319 (1970) · Zbl 0202.19101
[33] Smilde, A.; Bro, R.; Geladi, P., Multi-Way Analysis. Applications in the Chemical Sciences (2004), Wiley
[34] Affleck, I., Large-n limit of \(\mathit{SU} ( n )\) quantum “spin” chains, Phys. Rev. Lett., 54, 966-969 (1985)
[35] Vidal, G., Efficient classical simulation of slightly entangled quantum computations, Phys. Rev. Lett., 91, 147902 (2003)
[36] Martín-Delgado, M. A.; Roncaglia, M.; Sierra, G., Stripe ansätze from exactly solved models, Phys. Rev. B, 64, 075117 (2001)
[37] Wilson, K. G., The renormalization group: critical phenomena and the Kondo problem, Rev. Mod. Phys., 47, 773-840 (1975)
[38] White, S. R., Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett., 69, 2863-2866 (1992)
[39] Schuch, N.; Cirac, I.; Verstraete, F., Computational difficulty of finding matrix product ground states, Phys. Rev. Lett., 100, 250501 (2008)
[40] Pérez-García, D.; Verstraete, F.; Wolf, M. M.; Cirac, J. I., Matrix-product state representations, Quant. Inf. Comput., 7, 401-430 (2007) · Zbl 1152.81795
[41] Schollwöck, U., The density-matrix renormalization group in the age of matrix product states, Ann. Phys., 326, 96-192 (2011) · Zbl 1213.81178
[42] M.G. Eckholt-Perotti, Matrix product formalism, Master’s Thesis, Technische Universität München and Max-Planck-Institut für Quantenoptik, 2005.
[43] T. Huckle, K. Waldherr, T. Schulte-Herbrüggen, Exploiting matrix symmetries and physical symmetries in matrix product states and tensor trains, unpublished results. · Zbl 1270.15026
[44] Oseledets, I. V., Tensor-train decomposition, SIAM J. Sci. Comput., 33, 2295-2317 (2011) · Zbl 1232.15018
[45] Verstraete, F.; Porras, D.; Cirac, I., DMRG and periodic boundary conditions: a quantum information perspective, Phys. Rev. Lett., 93, 227205 (2004)
[46] Verstraete, F.; García-Ripoll, J. J.; Cirac, J. I., Matrix product density operators: simulation of finite-temperature and dissipative systems, Phys. Rev. Lett., 93, 207204 (2004)
[47] Oseledets, I. V., Approximation of \(2^d \times 2^d\) matrices using tensor decomposition, SIAM J. Matrix Anal. Appl., 31, 2130-2145 (2010) · Zbl 1200.15005
[48] Verstraete, F.; Wolf, M. M.; Pérez-Garía, D.; Cirac, I., Criticality, the area law, and the computational power of projected entangled pair states, Phys. Rev. Lett., 96, 220601 (2006) · Zbl 1228.81096
[49] Schuch, N.; Wolf, M. M.; Verstraete, F.; Cirac, I., Computational complexity of projected entangled pair states, Phys. Rev. Lett., 98, 140506 (2007) · Zbl 1228.81134
[50] Aguado, M.; Cirac, J. I.; Vidal, G., Topology in quantum states. PEPS formalism and beyond, J. Phys. Conf. Ser., 87, 012003 (2007)
[51] Verstraete, F.; Cirac, J. I., Renormalization and tensor product states in spin chains and lattices, Phys. Rev. A, 42, 504004 (2010) · Zbl 1181.82010
[52] Kolda, T. G.; Bader, B. W., Tensor decompositions and applications, SIAM Rev., 51, 455-500 (2009) · Zbl 1173.65029
[53] deLathauwer, L.; de Moor, B.; Vandewalle, J., On the best rank-1 and rank-\(( R_1 , R_2 , \ldots , R_n)\) approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 21, 1324-1342 (2000) · Zbl 0958.15026
[54] Oseledets, I. V.; Savostyanov, D. V.; Tyrtyshnikov, E. E., Linear algebra for tensor problems, Computing, 85, 169-188 (2009) · Zbl 1172.65018
[55] Oseledets, I. V.; Tyrtyshnikov, E. E., Breaking the curse of dimensionality, or how to use SVD in many dimensions, SIAM J. Sci. Comput., 31, 3744-3759 (2009) · Zbl 1200.65028
[56] Oseledets, I. V.; Tyrtyshnikov, E. E., Recursive decomposition of multidimensional tensors, Doklady Math., 80, 460-462 (2009) · Zbl 1183.15024
[57] Khoromskij, B., \( \mathcal{O} ( d \log N )\)-quantics approximation of \(N - d\) tensors in high-dimensional numerical modeling, Constr. Approx., 34, 1-24 (2011)
[58] Verstraete, F.; Cirac, J. I., Matrix product states represent ground states faithfully, Phys. Rev. B, 73, 094423 (2006)
[59] Rajih, M.; Comon, P.; Harshman, R. A., Enhanced line search: a novel method to accelerate parafac, SIAM J. Matrix Anal. Appl., 30, 1128-1147 (2008) · Zbl 1168.65313
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.