×

Stochastic analog of the dynamic model of HIV-1 infection described by delay differential equations. (Russian, English) Zbl 1438.34305

Sib. Zh. Ind. Mat. 22, No. 1, 74-89 (2019); translation in J. Appl. Ind. Math. 13, No. 1, 103-117 (2019).
Summary: Some deterministic and stochastic models are constructed basing on the same assumptions about the dynamics of HIV-1 infection. The deterministic model has the form of a system of differential equations with three delays. The stochastic model is based on a branching process with the interaction of particles and takes into account the stages of maturation of cells and virions. The durations of these stages correspond to the parameters describing the delays in the deterministic model. The influence of discreteness of stochastic model variables on the dynamics of HIV-1 infection is demonstrated. We find coinciding and significantly different conditions of HIV-1 infection elimination in the framework of deterministic and stochastic models.

MSC:

34K60 Qualitative investigation and simulation of models involving functional-differential equations
92C60 Medical epidemiology
34K50 Stochastic functional-differential equations
Full Text: DOI

References:

[1] R. Eftimie, J. J. Gillard, and D. A. Cantrell, “MathematicalModels for Immunology: Current State of the Art and Future Research Directions,” Bull.Math. Biol. No. 78, 2091-2134 (2016). · Zbl 1361.92033 · doi:10.1007/s11538-016-0214-9
[2] G. Bocharov, V. Chereshnev, I. Gainova, S. Bazhan, B. Bachmetyev, J. Argilaguet, J. Martinez, and A. Meyerhans, “Human Immunodeficiency Virus Infection: From Biological Observations to Mechanistic Mathematical Modelling,”Math. Model.Nat. Phenom. 7 (5), 78-104 (2012). · Zbl 1261.92033 · doi:10.1051/mmnp/20127507
[3] S. Nakaoka, I. Shingo, and K. Sato, “Dynamics of HIV Infection in Lymphoid Tissue Network,” J. Math. Biol. 72, 909-938 (2016). · Zbl 1337.92131 · doi:10.1007/s00285-015-0940-x
[4] S. Pankavich, “The Effects of Latent Infection on the Dynamics of HIV,” Differential Equations. Dynam. Syst. 24 (3), 281-303 (2016). · Zbl 1354.92091 · doi:10.1007/s12591-014-0234-6
[5] D. S. Taltavull, A. Vieiro, and T. Alarcon, “Stochastic Modelling of the Eradication of the HIV-1 infection by Stimulation of Latently Infected Cells in Patients Under Highly Active Anti-Retroviral Therapy,” J.Math. Biol. 73, 919-946 (2016). · Zbl 1360.92061 · doi:10.1007/s00285-016-0977-5
[6] P. W. Nelson and A. S. Perelson, “Mathematical Analysis of Delay Differential Equation Models of HIV-1 Infection,” Math. Biosci. No. 179, 73-94 (2002). · Zbl 0992.92035 · doi:10.1016/S0025-5564(02)00099-8
[7] H. T. Banks and D. M. Bortz, “A Parameter Sensitivity Methodology in the Context of HIV Delay Equation Models,” J. Math. Biol. 50, 607-625 (2005). · Zbl 1083.92025 · doi:10.1007/s00285-004-0299-x
[8] K. A. Pawelek, S. Liu, F. Pahlevani, and F. L. Rong, “A Model of HIV-1 Infection with Two Time Delays: Mathematical Analysis and Comparison with Patient Data,” Math. Biosci. 235 (1), 98-109 (2012). · Zbl 1241.92042 · doi:10.1016/j.mbs.2011.11.002
[9] M. Pitchaimani and C. Monica, “Global Stability Analysis of HIV-1 Infection Model with Three Time Delays,” J. Appl.Math. Comput. 48, 293-319 (2015). · Zbl 1362.93134 · doi:10.1007/s12190-014-0803-4
[10] J. Wang, J. Lang, and X. Zou, “Analysis of an Age Structured HIV Infection Model with Virus-to-Cell Infection and Cell-to-Cell Transmission,” Nonlinear Analysis: RealWorld Applications 34, 75-96 (2017). · Zbl 1352.92174 · doi:10.1016/j.nonrwa.2016.08.001
[11] N. V. Pertsev, “Global Solvability and Estimates for Solutions to the Cauchy Problem for the Retarded Functional Differential Equations That Are Used to theModel Living Systems,” Sibir. Mat. Zh. 59 (1), 143-159 (2018) [SiberiaMath. J. 59 (1), 113-125 (2018)]. · Zbl 1392.34092
[12] L. E. El’sgolts and S. B. Norkin, Introduction to Theory of Differential Equations with Retarded Argument (Nauka, Moscow, 1971) [in Russian]. · Zbl 0224.34053
[13] A. Yu. Obolenskii, “On Stability of Solutions to Delay Autonomous Vazhevsky Systems,” Ukrain.Mat. Zh. 35, 574-579 (1983). · Zbl 0537.34072
[14] V.A. Chereshnev, G. A. Bocharov, A.V. Kim, S. I. Bazhan, I. A. Gainova, A. N. Krasovskii, N.G. Shmagel’, A. V. Ivanov, M. A. Safronov, and R. M. Tret’yakova, Introduction to Problems of Modeling and Control for Dynamics of HIV Infection (Inst. Comput. Issledov., Izhevsk, 2016) [in Russian].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.