×

An in-depth analysis of the HIV-1/AIDS dynamics by comprehensive mathematical modeling. (English) Zbl 1255.92015

Summary: We present major results from a novel dynamic model intended to deterministically represent the complex relation between HIV-1 and the human immune system. The novel structure of the model extends previous work by representing different host anatomic compartments under a more in-depth cellular and molecular immunological phenomenology. Recently identified mechanisms related to HIV-1 infection as well as other well known relevant mechanisms typically ignored in mathematical models of HIV-1 pathogenesis and immunology, such as cell-cell transmission, are also addressed.

MSC:

92C60 Medical epidemiology
Full Text: DOI

References:

[1] Ho, D. D.; Neumann, A. U.; Perelson, A. S.; Chen, W.; Leonard, J. M.; Markowitz, M., Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, 373, 123-126 (1995)
[2] Wei, X.; Ghosh, S. K.; Taylor, M. E.; Johnson, V. A.; Emini, E. A.; Deutsch, P.; Lifson, J. D.; Bonhoeffer, S.; Nowak, M. A.; Hahn, B. H.; Saag, M. S.; Shaw, G. M., Viral dynamics in human immunodeficiency virus type 1 infection, Nature, 373, 117-122 (1995)
[3] Murray, J. M.; Kaufmann, G.; Kelleher, A. D.; Cooper, D. A., A model of primary HIV-1 infection, Math. Biosci., 154, 57-85 (1998) · Zbl 0938.92020
[4] Kamina, A.; Makuch, R. W.; Zhao, H., A stochastic modeling of early HIV-1 population dynamics, Math. Biosci., 170, 187-198 (2001) · Zbl 1005.92019
[5] Stengel, R. F., Mutation and control of the human immunodeficiency virus, Math. Biosci., 213, 93-102 (2008) · Zbl 1139.92310
[6] Wick, D.; Self, S. G., Early HIV infection in vivo: branching-process model for studying timing of immune responses and drug therapy, Math. Biosci., 165, 115-134 (2000) · Zbl 0963.92022
[7] Chen, G.; Shankar, P.; Lange, C.; Valdez, H.; Skolnik, P. R.; Wu, L.; Manjunath, N.; Lieberman, J., CD8 T cells specific for human immunodeficiency virus, Epstein-Barr virus, and cytomegalovirus lack molecules for homing to lymphoid sites of infection, Blood, 98, 156-164 (2001)
[8] Perelson, A. S.; Nelson, P. W., Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41, 3-44 (1999) · Zbl 1078.92502
[9] Flint, S. J.; Enquist, L. W.; Krug, R. M.; Racaniello, V. R.; Skalka, A. M., Principles of Virology — Molecular Biology, Pathogenesis, and Control (2000), ASM Press: ASM Press Washington, DC
[10] Kepler, T. B.; Perelson, A. S., Drug concentration heterogeneity facilitates the evolution of drug resistance, Proc. Natl. Acad. Sci. USA, 95, 11514-11519 (1998) · Zbl 0919.92023
[11] Pantaleo, G.; Graziosi, C.; Demarest, J. F.; Butini, L.; Montroni, M.; Fox, C. H.; Orenstein, J. M.; Kotler, D. P.; Fauci, A. S., HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease, Nature, 362, 355-358 (1993)
[12] M. Joly, Mathematical modeling, optimal operation and scheduling of dynamical reactive systems, Ph.D. Thesis, Department of Chemical Engineering, University of SÃO Paulo, SÃO Paulo, Brazil, 2004 (in Portuguese).; M. Joly, Mathematical modeling, optimal operation and scheduling of dynamical reactive systems, Ph.D. Thesis, Department of Chemical Engineering, University of SÃO Paulo, SÃO Paulo, Brazil, 2004 (in Portuguese).
[13] Tan, W. Y.; Wu, H., Stochastic modeling of the dynamics of CD \(4^+\) T cells by HIV and some Monte Carlo studies, Math. Biosci., 147, 173-205 (1998) · Zbl 0887.92021
[14] Lin, H.; Shuai, J. W., A stochastic spatial model of HIV dynamics with an asymetric battle between the virus and the immune system, New J. Phys., 12, 1-18 (2010)
[15] Joly, M.; Pinto, J. M., The role of mathematical modeling on the optimal control of HIV-1 pathogenesis, AIChE J., 52, 1-28 (2006)
[16] Abbas, A. K.; Lichtman, A. H.; Pober, J. S., Cellular and Molecular Immunology (2000), W.B. Saunders Company: W.B. Saunders Company Philadelphia, PA
[17] Joly, M.; Pinto, J. M., CXCR4 and CCR5 regulation and expression patterns on T- and monocyte-macrophage cell lineages: implications for susceptibility to infection by HIV-1, Math. Biosci., 195, 92-126 (2005) · Zbl 1065.92027
[18] Tuckwell, H. C.; Le Corfec, E., A stochastic model for early HIV-1 population dynamics, J. Theoret. Biol., 195, 451-463 (1998)
[19] Essunger, P.; Perelson, A. S., Modeling HIV infection of CD \(4^+\) T-cell subpopulations, J. Theoret. Biol., 170, 367-391 (1994)
[20] Stilianakis, N. I.; Dietz, K.; Schenzle, D., Analysis of a model for the pathogenesis of AIDS, Math. Biosci., 145, 27-46 (1997) · Zbl 0896.92016
[21] Shankarappa, R.; Margolick, J. B.; Gange, S. J.; Rodrigo, A. G.; Upchurch, D.; Farzadegan, H.; Gupta, P.; Rinaldo, C. R.; Learn, G. H.; He, X.; Huang, X.; Mullins, J. M., Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection, J. Virol., 73, 10489-10502 (1999)
[22] Monteiro, L. H.A.; Gonçalves, C. H.O.; Piqueira, J. R.C., A condition for successful escape of a mutant after primary HIV infection, J. Theoret. Biol., 203, 399-406 (2000)
[23] Hladik, F.; Lentz, G.; Akridge, R. E.; Peterson, G.; Kelley, H.; McElroy, A.; McElrath, M. J., Dendritic cell-T-cell interactions support coreceptor-independent human immunodeficiency virus type 1 transmission in the human genital tract, J. Virol., 73, 5833-5842 (1999)
[24] Shampine, L. F.; Reichelt, M. W., The matlab ODE suite, SIAM J. Sci. Comput., 18, 1-22 (1997) · Zbl 0868.65040
[25] Ho, D. D., Viral counts count in HIV infection, Science, 272, 1124-1125 (1996)
[26] Stafford, M. A.; Corey, L.; Cao, Y.; Daar, E. S.; Ho, D. D.; Perelson, A. S., Modeling plasma virus concentration during primary HIV infection, J. Theoret. Biol., 203, 285-301 (2000)
[27] Koup, R. A.; Safrit, J. T.; Cao, Y.; Andrews, C. A.; McLeod, G.; Borkowsky, W.; Farthing, C.; Ho, D. D., Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome, J. Virol., 68, 4650-4655 (1994)
[28] Mandarelli, F.; Sato, H.; Berthold, E.; Orenstein, J.; Martin, M. A., Rapid induction of apoptosis by cell-to-cell transmission of human immunodeficiency virus type 1, J. Virol, 69, 6457-6465 (1995)
[29] Pantaleo, G.; Soudeyns, H.; Demarest, J. F.; Vaccarezza, M.; Graziosi, C.; Paolucci, S.; Daucher, M.; Cohen, O. J.; Denis, F.; Biddison, W. E.; Sekaly, R. P.; Fauci, A. S., Evidence for rapid disappearance of initially expanded HIV-specific CD \(8^+\) T cell clones during primary HIV infection, Proc. Natl. Acad. Sci. USA, 94, 9848-9853 (1997)
[30] Kalams, S. A.; Walker, B. D., The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses, J. Exp. Med., 188, 2199-2204 (1998)
[31] Carr, J. M.; Hocking, H.; Li, P.; Burrell, C. J., Rapid and efficient cell-to-cell transmission of human immunodeficiency virus infection from monocyte-derived macrophages to peripheral blood lymphocytes, Virology, 265, 319-329 (1999)
[32] Ludewig, B.; Gelderblom, H. R.; Becker, Y.; Schäfer, A.; Pauli, G., Transmission of HIV-1 from productively infected mature langerhans cells to primary CD \(4^+\) T lymphocytes results in altered T cell responses with enhanced production of IFN-\( \gamma\) and IL-10, Virology, 215, 51-60 (1996)
[33] Sato, H.; Orenstein, J.; Dimitrov, D.; Martin, M., Cell-to-cell spread of HIV-1 occurs within minutes and may not involve the participation of virus particles, Virology, 186, 712-724 (1992)
[34] Stranford, S. A.; Ong, J. C.; Martinez-Mariño, B.; Busch, M.; Hecht, F. M.; Kahn, J.; Levy, J. A., Reduction in CD \(8^+\) cell noncytotoxic anti-HIV activity in individuals receiving highly active antiretroviral therapy during primary infection, Proc. Natl. Acad. Sci. USA, 98, 597-602 (2001)
[35] Grossman, Z.; Feinberg, M. B.; Paul, W. E., Multiple modes of cellular activation and virus transmission in HIV infection: a role for chronically and latently infected cells in sustaining viral replication, Immunology, 95, 6314-6319 (1998)
[36] Bleul, C. C.; Wu, L.; Hoxie, J. A.; Springer, T. A.; Mackay, C. R., The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes, Proc. Natl. Acad. Sci. USA, 94, 1925-1930 (1997)
[37] Ebert, L. M.; McColl, S. R., Coregulation of CXC Chemokine receptor and CD4 expression on T lymphocytes during allogeneic activation, J. Immunol., 166, 4870-4878 (2001)
[38] Connor, R. I.; Sheridan, K. E.; Ceradini, D.; Choe, S.; Landau, N. R., Change in coreceptor use correlates with disease progression in HIV-1-infected individuals, J. Exp. Med., 185, 621-628 (1997)
[39] Van’t Wout, A. B.; Ran, L. J.; Kuiken, C. L.; Kooststra, N. A.; Pals, S. T.; Schuitemaker, H., Analysis of the temporal relationship between human immunodeficiency virus type 1 quasispecies in sequential blood samples and various organs obtained at autopsy, J. Virol., 72, 488-496 (1998)
[40] Wong, J. K.; Hezareh, M.; Günthard, H. F.; Havlir, D. V.; Ignacio, C. C.; Spina, C. A.; Richman, D. D., Recovery of replication-competent HIV despite prolonged suppression of plasma viremia, Science, 278, 1291-1295 (1997)
[41] Koenig, S.; Gendelman, H. E.; Orenstein, J. M.; Dal Canto, M. C.; Pezeshkpour, G. H.; Yungbluth, M.; Jannota, F.; Aksamit, A.; Martin, M. A.; Fauci, A. S., Detection of AIDS Virus in macrophages in brain tissue from AIDS patients with encephalopathy, Science, 233, 1089-1093 (1986)
[42] Stilianakis, N. I.; Boucher, C. A.B.; Jong, M. D.; Leeuwen, R. V.; Schuurman, R.; Boer, R. J., Clinical data sets of human immunodeficiency virus type 1 reverse transcriptase-resistent mutants explained by a mathematical model, J. Virol., 71, 1, 161-168 (1997)
[43] Finzi, D.; Hermankova, M.; Pierson, T.; Carruth, L. M.; Buck, C.; Chaisson, R. E.; Quinn, T. C.; Chadwick, K.; Margolick, J.; Brookmeyer, R.; Gallant, J.; Markowitz, M.; Ho, D. D.; Richman, D. D.; Siliciano, R., Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy, Science, 278, 1295-1300 (1997)
[44] Tsai, W. P.; Conley, S. R.; Kung, H. F.; Garrity, R. R.; Nara, P. L., Preliminary in vitro growth cycle and transmission studies of HIV-1 in an autologous primary cell assay of blood-derived macrophages and peripheral blood mononuclear cells, Virology, 226, 205-216 (1996)
[45] Badley, A. D.; Pilon, A. A.; Landay, A.; Lynch, D. H., Mechanisms of HIV-associated lymphocyte apoptosis, Blood, 96, 9, 2951-2964 (2000)
[46] Culshaw, R.; Ruan, S., A delay-differential equation model of HIV infection of CD \(4^+\) T-cell, Math. Biosci., 165, 27-39 (2000) · Zbl 0981.92009
[47] Yang, L. P.; Riley, J. L.; Carroll, R. G.; June, C. H.; Hoxie, J.; Patterson, B. K.; Ohshima, Y.; Hodes, R. J.; Delespesse, G., Productive infection of neonatal CD \(8^+\) T lymphocytes by HIV-1, J. Exp. Med., 187, 7, 1139-1144 (1998)
[48] Spouge, J. L.; Shrager, R. I.; Dimitrov, D. S., HIV-1 infection kinetics in tissue cultures, Math. Biosci., 138, 1-22 (1996) · Zbl 0873.92023
[49] Yang, O. O.; Kalams, S. A.; Trocha, A.; Cao, H.; Luster, A.; Johnson, R. P.; Walker, B. D., Suppression of human immunodeficiency virus type 1 replication by CD \(8^+\) cells: evidence for HLA class I-restricted triggering of cytolitic and noncytolitic mechanisms, J. Virol., 71, 4, 3120-3128 (1997)
[50] Lee, B.; Sharron, M.; Montaner, L. J.; Weissman, D.; Doms, R. W., Quantification of CD4, CCR5, and CXCR4 levels on lymphocite subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages, Proc. Natl. Acad. Sci. USA, 96, 5215-5220 (1999)
[51] Ahmadzadeh, M.; Hussain, S. F.; Farber, D. L., Heterogeneity of the memory CD4 T cell response: persisting effectors and resting memory T cells, J. Immunol., 166, 926-935 (2001)
[52] Nowak, M. A.; Bonhoeffer, S.; Shaw, G. M.; May, R. M., Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations, J. Theoret. Biosci., 184, 203-217 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.