×

Global threshold dynamics and finite-time contraction stability for age-structured HIV models with delay. (English) Zbl 1497.92260

Summary: Considering age of infected cells and intracellular delay in both virus-to-cell and cell-to-cell transmissions, this paper develops an age-structured HIV model with delay to investigate the global threshold dynamics, which show the uninfected and infected steady states of the model. Using the Lyapunov function and LaSalle’s invariance principle, we show that the global threshold dynamics of the model can be determined by utilizing basic reproduction number. Moreover, given that sudden environmental changes can lead to uncertainty in parameters of the model, a stochastic age-structured HIV model with Markovian switching is developed to study the finite-time contraction stability, which characterizes transmission properties of virus over a finite time. The sufficient conditions of the finite-time contraction stability are obtained by employing the Lyapunov function and stochastic comparison theorem. Numerical examples are presented to illustrate the theoretical results, and numerical results show that different noise intensity and delay affect stability of the HIV models.

MSC:

92D30 Epidemiology
93D40 Finite-time stability
35Q92 PDEs in connection with biology, chemistry and other natural sciences
Full Text: DOI

References:

[1] Ho, D. D.; Neumann, A. U.; Perelson, A. S.; Chen, W.; Leonard, J. M.; Markowitz, M., Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, 373, 123-126 (1995) · doi:10.1038/373123a0
[2] Perelson, A. S.; Nelson, P. W., Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41, 3-44 (1999) · Zbl 1078.92502 · doi:10.1137/s0036144598335107
[3] Reilly, C.; Wietgrefe, S.; Sedgewick, G.; Haase, A., Determination of simian immunodeficiency virus production by infected activated and resting cells, AIDS, 21, 163-168 (2007) · doi:10.1097/qad.0b013e328012565b
[4] Cohen, M. S., Prevention of HIV-1 infection with early antiretroviral therapy, New England J. Med., 365, 493-505 (2011) · doi:10.1056/nejmoa1105243
[5] Lai, X.; Zou, X., Modeling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission, SIAM J. Appl. Math., 74, 898-917 (2014) · Zbl 1304.34139 · doi:10.1137/130930145
[6] Hattaf, K.; Yang, Y., Global dynamics of an age-structured viral infection model with general incidence function and absorption, Int. J. Biomath., 11, 1850065 (2018) · Zbl 1403.35303 · doi:10.1142/s1793524518500651
[7] Nelson, P. W.; Gilchrist, M. A.; Gilchrist, M. A.; Coombs, D.; Hyman, J. M.; Perelson, S. A., An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells, Math. Biosci. Eng., 1, 267-288 (2004) · Zbl 1060.92038 · doi:10.3934/mbe.2004.1.267
[8] Xu, R.; Tian, X.; Zhang, S., An age-structured within-host HIV-1 infection model with virus-to-cell and cell-to-cell transmissions, J. Biol. Dyn., 12, 89-117 (2018) · Zbl 1448.92358 · doi:10.1080/17513758.2017.1404646
[9] Wang, J.; Lang, J.; Zou, X., Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission, Nonlinear Anal. Appl., 34, 75-96 (2017) · Zbl 1352.92174 · doi:10.1016/j.nonrwa.2016.08.001
[10] Mittler, J. E.; Sulzer, B.; Neumann, A. U.; Perelson, A. S., Influence of delayed viral production on viral dynamics in HIV-1 infected patients, Math. Biosci., 152, 143-163 (1998) · Zbl 0946.92011 · doi:10.1016/s0025-5564(98)10027-5
[11] Nelson, P. W.; Perelson, A. S., Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci., 179, 73-94 (2002) · Zbl 0992.92035 · doi:10.1016/s0025-5564(02)00099-8
[12] Liu, S.; Wang, L., Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy, Math. Biosci. Eng., 7, 675-685 (2010) · Zbl 1260.92065 · doi:10.3934/mbe.2010.7.675
[13] Yang, Y.; Zou, L.; Ruan, S., Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions, Math. Biosci., 270, 183-191 (2015) · Zbl 1331.34160 · doi:10.1016/j.mbs.2015.05.001
[14] Lin, J.; Xu, R.; Tian, X., Threshold dynamics of an HIV-1 virus model with both virus-to-cell and cell-to-cell transmissions, intracellular delay, and humoral immunity, Appl. Math. Comput., 315, 516-530 (2017) · Zbl 1426.92078 · doi:10.1016/j.amc.2017.08.004
[15] Herz, A. V.; Bonhoeffer, S.; Anderson, R. M.; May, R. M.; Nowak, M. A., Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay, Proc. Natl Acad. Sci. USA, 93, 7247-7251 (1996) · doi:10.1073/pnas.93.14.7247
[16] Yang, J.; Tan, Y.; Cheke, R. A., Modelling effects of a chemotherapeutic dose response on a stochastic tumour-immune model, Chaos Solitons Fractals, 123, 1-13 (2019) · Zbl 1448.92107 · doi:10.1016/j.chaos.2019.03.029
[17] Aisu, R.; Horita, T., Stochastic extinction of tumor cells due to synchronization effect through time periodic treatment in a tumor-immune interaction model, AJP Regul. Integr. Compar. Physiol., 3, 191-199 (2012) · doi:10.1587/nolta.3.191
[18] Caravagna, G.; d’Onofrio, A.; Milazzo, P.; Barbuti, R., Tumour suppression by immune system through stochastic oscillations, J. Theor. Biol., 265, 336-345 (2010) · Zbl 1460.92047 · doi:10.1016/j.jtbi.2010.05.013
[19] Yuan, Y.; Allen, L. J S., Stochastic models for virus and immune system dynamics, Math. Biosci., 234, 84-94 (2011) · Zbl 1244.92043 · doi:10.1016/j.mbs.2011.08.007
[20] Li, D.; Liu, S.; Cui, J. A., Threshold dynamics and ergodicity of an SIRS epidemic model with Markovian switching, J. Differ. Equ., 263, 8873-8915 (2017) · Zbl 1377.60070 · doi:10.1016/j.jde.2017.08.066
[21] Greenhalgh, D.; Liang, Y.; Mao, X., Modelling the effect of telegraph noise in the SIRS epidemic model using Markovian switching, Physica A, 462, 684-704 (2016) · Zbl 1400.92484 · doi:10.1016/j.physa.2016.06.125
[22] Guo, W.; Zhang, Q., Explicit numerical approximation for an impulsive stochastic age-structured HIV infection model with Markovian switching, Math. Comput. Simul., 182, 86-115 (2021) · Zbl 1524.60183 · doi:10.1016/j.matcom.2020.10.015
[23] Li, X.; Yang, X.; Song, S., Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica, 103, 135-140 (2019) · Zbl 1415.93188 · doi:10.1016/j.automatica.2019.01.031
[24] Weiss, L.; Infante, E., Finite time stability under perturbing forces and on product spaces, IEEE Trans. Autom. Control, 12, 54-59 (1967) · doi:10.1109/tac.1967.1098483
[25] Cheng, J.; Xiang, H.; Wang, H.; Liu, Z.; Hou, L., Finite-time stochastic contractive boundedness of Markovian jump systems subject to input constraints, ISA Trans., 60, 74-81 (2016) · doi:10.1016/j.isatra.2015.10.021
[26] Onori, S.; Dorato, P.; Galeani, S.; Abdallah, C., Finite time stability design via feedback linearization (2005)
[27] Joby, M.; Santra, S.; Anthoni, S. M., Finite-time contractive boundedness of extracorporeal blood circulation process, Appl. Math. Comput., 388 (2021) · Zbl 1508.76135 · doi:10.1016/j.amc.2020.125527
[28] Kwon, H-D, Optimal treatment strategies derived from a HIV model with drug-resistant mutants, Appl. Math. Comput., 188, 1193-1204 (2007) · Zbl 1113.92035 · doi:10.1016/j.amc.2006.10.071
[29] Lin, J.; Xu, R.; Tian, X., Threshold dynamics of an HIV-1 virus model with both virus-to-cell and cell-to-cell transmissions, intracellular delay, and humoral immunity, Appl. Math. Comput., 315, 516-530 (2017) · Zbl 1426.92078 · doi:10.1016/j.amc.2017.08.004
[30] Hale, J. K.; Verduyn Lunel, S., Introduction to Functional Differential Equations (1993), Berlin: Springer, Berlin · Zbl 0787.34002
[31] Mao, X.; Marion, G.; Renshaw, E., Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Process. Appl., 97, 95-110 (2002) · Zbl 1058.60046 · doi:10.1016/s0304-4149(01)00126-0
[32] Karrakchou, J.; Rachik, M.; Gourari, S., Optimal control and infectiology: application to an HIV/AIDS model, Appl. Math. Comput., 177, 807-818 (2006) · Zbl 1096.92031 · doi:10.1016/j.amc.2005.11.092
[33] Kutch, J. J.; Gurfil, P., Optimal control of HIV infection with a continuously-mutating viral population, 8-10 (2002), Piscataway, NJ: IEEE, Piscataway, NJ
[34] Guo, W.; Ye, M.; Zhang, Q., Stability in distribution for age-structured HIV model with delay and driven by Ornstein-Uhlenbeck process, Stud. Appl. Math., 147, 792-815 (2021) · Zbl 1487.35378 · doi:10.1111/sapm.12400
[35] Zhao, S.; Yuan, S.; Wang, H., Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation, J. Differ. Equ., 268, 5113-5139 (2020) · Zbl 1433.92045 · doi:10.1016/j.jde.2019.11.004
[36] Hattaf, K., A new generalized definition of fractional derivative with non-singular kernel, Computation (2020) · doi:10.3390/computation8020049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.