×

The global Golub-Kahan method and Gauss quadrature for tensor function approximation. (English) Zbl 07644382

Summary: This paper is concerned with Krylov subspace methods based on the tensor t-product for computing certain quantities associated with generalized third-order tensor functions. We use the tensor t-product and define the tensor global Golub-Kahan bidiagonalization process for approximating tensor functions. Pairs of Gauss and Gauss-Radau quadrature rules are applied to determine the desired quantities with error bounds. An application to the computation of the tensor nuclear norm is presented and illustrates the effectiveness of the proposed methods.

MSC:

65-XX Numerical analysis
Full Text: DOI

References:

[1] Arrigo, F.; Benzi, M.; Fenu, C., Computation of generalized matrix functions, SIAM J. Matrix Anal. Appl., 37, 836-860 (2016) · Zbl 1342.65121 · doi:10.1137/15M1049634
[2] Bentbib, AH; El Hachimi, A.; Jbilou, K.; Ratnani, A., A tensor regularized nuclear norm method for image and video completion, J. Optim. Theory Appl., 192, 401-425 (2022) · Zbl 1527.65047 · doi:10.1007/s10957-021-01947-3
[3] Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Wiley, New York (2003) · Zbl 1026.15004
[4] Cipolla, S.; Redivo-Zaglia, M.; Tudisco, F., Shifted and extrapolated power methods for tensor ℓ^P-eigenpairs, Electron. Trans. Numer. Anal., 53, 1-27 (2020) · Zbl 1433.65049 · doi:10.1553/etna_vol53s1
[5] Davis, T., Hu, Y.: The SuiteSparse Matrix Collection. https://sparse.tamu.edu (2019)
[6] Del Buono, N.; Lopez, L.; Politi, T., Computation of functions of Hamiltonian and skew-symmetric matrices, Math. Comp. Simul., 79, 1284-1297 (2008) · Zbl 1162.65338 · doi:10.1016/j.matcom.2008.03.011
[7] El Guide, M.; El Ichi, A.; Jbilou, K.; Sadaka, R., On tensor GMRES and Golub-Kahan methods via the t-product for color image processing, Electron. J. Linear Algebra, 37, 524-543 (2021) · Zbl 1538.65066 · doi:10.13001/ela.2021.5471
[8] El Ichi, A., Jbilou, K., Sadaka, R.: On tensor tubal-Krylov subspace methods. Linear Multilinear Algebra (2021). doi:10.1080/03081087.2021.1999381 · Zbl 1538.65066
[9] Estrada, E.; Higham, DJ, Network properties revealed through matrix functions, SIAM Rev., 52, 696-714 (2010) · Zbl 1214.05077 · doi:10.1137/090761070
[10] Fan, Q.; Gao, S., A mixture of nuclear norm and matrix factorization for tensor completion, J. Sci. Comput., 75, 43-64 (2018) · Zbl 1405.65059 · doi:10.1007/s10915-017-0521-9
[11] Fenu, C.; Martin, D.; Reichel, L.; Rodriguez, G., Block Gauss and anti-Gauss quadrature with application to networks, SIAM J. Matrix Anal. Appl., 34, 1655-1684 (2013) · Zbl 1425.65063 · doi:10.1137/120886261
[12] Gautschi, W., The interplay between classical analysis and (numerical) linear algebra - a tribute to Gene H, Golub. Electron. Trans. Numer. Anal., 13, 119-147 (2002) · Zbl 1065.65049
[13] Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Oxford University Press, Oxford (2004) · Zbl 1130.42300
[14] Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013) · Zbl 1268.65037
[15] Golub, G.H., Meurant, G.: Matrices. Moments and Quadrature with Applications. Princeton University Press, Princeton (2010) · Zbl 1217.65056
[16] Gu, S. H., Zhang, L., Zuo, W. M.: Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Columbus, OH, USA, 2862-2869 (2014)
[17] Hawkins, JB; Ben-Israel, A., On generalized matrix functions, Linear Multilinear Algebra, 1, 163-171 (1973) · Zbl 0291.15004 · doi:10.1080/03081087308817015
[18] Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008) · Zbl 1167.15001
[19] Hochbruck, M.; Ostermann, A., Exponential integrators, Acta Numer., 19, 209-286 (2010) · Zbl 1242.65109 · doi:10.1017/S0962492910000048
[20] Hutchinson, M., A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines, Comm. Statist. Simul., 18, 1059-1076 (1989) · Zbl 0695.62113 · doi:10.1080/03610918908812806
[21] Hao, N.; Kilmer, ME; Braman, K.; Hoover, RC, Facial recognition using tensor-tensor decompositions, SIAM J. Imaging Sci., 6, 437-463 (2013) · Zbl 1305.15061 · doi:10.1137/110842570
[22] Hu, W.; Tao, D.; Zhang, W.; Xie, Y.; Yang, Y., The twist tensor nuclear norm for video completion, IEEE Trans. Neural Netw. Learn. Syst., 28, 2961-2973 (2017) · doi:10.1109/TNNLS.2016.2611525
[23] Jbilou, K.; Messaoudi, A.; Sadok, H., Global FOM and GMRES algorithms for matrix equations, Appl. Numer. Math., 31, 49-63 (1999) · Zbl 0935.65024 · doi:10.1016/S0168-9274(98)00094-4
[24] Jbilou, K.; Sadok, H.; Tinzefte, A., Oblique projection methods for multiple linear systems, Electron. Trans. Numer. Anal., 20, 119-138 (2005) · Zbl 1121.65313
[25] Kilmer, ME; Braman, K.; Hao, N.; Hoover, RC, Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging, SIAM J. Matrix Anal. Appl., 34, 148-172 (2013) · Zbl 1269.65044 · doi:10.1137/110837711
[26] Khoromskij, BN, Tensor numerical methods for multidimensional PDES: Theoretical analysis and initial applications, ESAIM Proc. Surv., 48, 1-28 (2015) · Zbl 1382.65461 · doi:10.1051/proc/201448001
[27] Kilmer, ME; Martin, CD, Factorization strategies for third-order tensors, Linear Algebra Appl., 435, 641-658 (2011) · Zbl 1228.15009 · doi:10.1016/j.laa.2010.09.020
[28] Long, Z.; Liu, Y.; Chen, L.; Zhu, C., Low rank tensor completion for multiway visual data, Signal Proc., 155, 301-316 (2019) · doi:10.1016/j.sigpro.2018.09.039
[29] Lund, K.: The tensor t-function: A definition for functions of third-order tensors. Numer. Linear Algebra Appl. 27, Art. e2288 (2020) · Zbl 1463.15052
[30] Madathil, B.; George, S., N: Twist tensor total variation regularized-reweighted nuclear norm based tensor completion for video missing area recovery, Inform. Sci., 423, 376-397 (2018) · Zbl 1436.94012 · doi:10.1016/j.ins.2017.09.058
[31] Martin, CD; Shafer, R.; LaRue, B., An order-p tensor factorization with applications in imaging, SIAM J. Sci. Comput., 35, A474-A490 (2013) · Zbl 1273.15032 · doi:10.1137/110841229
[32] Miao, Y.; Qi, L.; Wei, Y., Generalized tensor function via the tensor singular value decomposition based on the t-product, Linear Algebra Appl., 590, 258-303 (2020) · Zbl 1437.15034 · doi:10.1016/j.laa.2019.12.035
[33] Miao, Y.; Qi, L.; Wei, Y., T-Jordan canonical form and T-Drazin inverse based on the T-product, Commun. Appl. Math. Comput., 3, 201-220 (2021) · Zbl 1476.15045 · doi:10.1007/s42967-019-00055-4
[34] Reichel, L., Ugwu, U. O.: Tensor Arnoldi-Tikhonov and GMRES-type methods for ill-posed problems with a t-product structure. J. Sci. Comput. 90, Art. 59 (2022) · Zbl 1481.65060
[35] Reichel, L., Ugwu, U. O.: The tensor Golub-Kahan-Tikhonov method applied to the solution of ill-posed problems with a t-product structure. Numer. Linear Algebra Appl. 29, Art. e2412 (2022) · Zbl 07511593
[36] Sun, W.; Huang, L.; So, HC; Wang, J., Orthogonal tubal rank-1 tensor pursuit for tensor completion, Signal Proc., 157, 213-224 (2019) · doi:10.1016/j.sigpro.2018.11.015
[37] Ubaru, S.; Chen, J.; Saad, Y., Fast estimation of tr(f(A)) via stochastic Lanczos quadrature, SIAM J. Matrix Anal. Appl., 38, 1075-1099 (2017) · Zbl 1386.65125 · doi:10.1137/16M1104974
[38] Xu, J., Cheng Y., Ma, Y.: Weighted Schatten p-norm low rank error constraint for image denoising. Entropy (Basel) 158, (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.