×

Strong Gelfand pairs of symmetric groups. (English) Zbl 1535.20072

Summary: A strong Gelfand pair is a pair \((G,H)\), \(H\leq G\), of finite groups such that the Schur ring determined by the \(H\)-classes \(g^H\), \(g\in G\), is a commutative ring. We find all strong Gelfand pairs \((S_n,H)\). We also define an extra strong Gelfand pair \((G,H)\), this being a strong Gelfand pair of maximal dimension, and show that in this case \(H\) must be abelian.

MSC:

20C30 Representations of finite symmetric groups
20C15 Ordinary representations and characters
20E22 Extensions, wreath products, and other compositions of groups

Software:

OEIS; GAP; Magma
Full Text: DOI

References:

[1] Aizenbud, A., Gourevitch, D., Rallis, S. and Schiffmann, G., Gérard, Multiplicity one theorems, Ann. Math. (2)172(2) (2010) 1407-1434. · Zbl 1202.22012
[2] Aizenbud, A. and Gourevitch, D., Multiplicity one theorem for \((G L_{n + 1}(\mathbb{R}),G L_n(\mathbb{R}))\), Selecta Math. (N.S.)15(2) (2009) 271-294. · Zbl 1185.22006
[3] Sun, B. and Zhu, C.-B., Multiplicity one theorems: The Archimedean case, Ann. Math. (2)175(1) (2012) 23-44. · Zbl 1239.22014
[4] Breuer, T. and Lux, K., The multiplicity-free permutation characters of the sporadic simple groups and their automorphism groups, Comm. Algebra24(7) (1996) 2293-2316. · Zbl 0855.20013
[5] Carter, R. W., Conjugacy classes in the Weyl group, Compositio Math.25 (1972) 1-59. · Zbl 0254.17005
[6] Ceccherini-Silberstein, T., Scarabotti, F. and Tolli, F., Harmonic analysis on finite groups, in Representation Theory, Gelfand Pairs and Markov Chains, Vol. 108 (, Cambridge University Press, Cambridge, 2008), xiv + 440 pp. · Zbl 1149.43001
[7] Francis, A. E. and Humphries, S. P., Commutative Schur rings over symmetric groups II: The case \(n=6\), J. Algebra Comb. Discrete Struct. Appl.3(2) (2016) 61-80. · Zbl 1428.20008
[8] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.10.2 (2019), https://www.gap-system.org.
[9] Godsil, C. and Meagher, K., Multiplicity-free permutation representations of the symmetric group, Ann. Comb.13(4) (2010) 463-490. · Zbl 1234.20015
[10] Fulton, W. and Harris, J., Representation theory: A first course, in Graduate Texts in Mathematics, Vol. 129 (Springer-Verlag, New York, 1991). · Zbl 0744.22001
[11] Humphries, S. P., Commutative Schur rings over symmetric groups, J. Algebraic Combin.42(4) (2015) 971-997. · Zbl 1343.20003
[12] Humphries, S. P., Johnson, K. W. and Misseldine, A., Commutative Schur rings of maximal dimension, Comm. Algebra43(12) (2015) 5298-5327. · Zbl 1338.20001
[13] Isaacs, I. M., Character Theory of Finite Groups, Academic Press, New York; [MR0460423] (AMS Chelsea Publishing, Providence, RI, 2006), xii + 310 pp. · Zbl 1119.20005
[14] James, G. and Kerber, A., The representation theory of the symmetric group, in Encyclopedia of Mathematics and its Applications, Vol. 16 (Addison-Wesley Publishing Co., Reading, Mass, 1981), xxviii + 510 pp. · Zbl 0491.20010
[15] James, G. and Liebeck, M., Representations and Characters of Groups, 2nd ed. (Cambridge University Press, New York, 2001). · Zbl 0981.20004
[16] Karlof, J., The subclass algebra associated with a finite group and subgroup, Trans. Amer. Math. Soc.207 (1975) 329-341. · Zbl 0308.20006
[17] Bosma, W., Cannon, J. and Playoust, C., The Magma algebra system. I. The user language, J. Symbolic Comput.24 (1997) 235-265. · Zbl 0898.68039
[18] McKay, J., The largest degrees of irreducible characters of the symmetric group, Math. Comp.30(135) (1976) 624-631. · Zbl 0345.20011
[19] Muzychuk, M. and Ponomarenko, I., Schur rings, European J. Combin.30(6) (2009) 1526-1539. · Zbl 1195.20003
[20] Saxl, J., On multiplicity-free permutation representations, in Finite Geometries and Designs (Cambridge University Press, Cambridge, New York, 1981), pp. 337-353. · Zbl 0454.20010
[21] Schur, I., Zur Theorie der einfach transitiven Permutationsgruppen (Sitz. Preuss. Akad. Wiss., Phys-Math Klasse, Berlin, 1933), pp. 598-623. · JFM 59.0151.01
[22] N. J. A. Sloan, OEIS Foundation Inc. (2020), The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
[23] Wielandt, H., Finite Permutation Groups (Academic Press, New York, London, 1964), x + 114 pp. · Zbl 0138.02501
[24] Wildon, M., Multiplicity-free representations of symmetric groups, J. Pure Appl. Algebra213 (2009) 1464-1477. · Zbl 1170.20006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.