×

Infinite dimensional multiplicity free spaces. III: Matrix coefficients and regular functions. (English) Zbl 1207.22012

[Part I: Limits of compact commutative spaces, in: K.-H. Neeb and A. Pianzola (eds.), “Developments and trends in infinite dimensional Lie theory”, Birkhäuser (to appear); Part II in Contemporary Mathematics 491, 179–208 (2009; Zbl 1180.22021).]
Let \(G\) be a locally compact topological group and \(K\) a compact subgroup. Then \((G,K)\) is a Gelfand pair, i.e. \(L^1(K\setminus G/K)\) is commutative under convolution, if and only if the left regular representation of \(G\) on \(L^2(G/K)\) is multiplicity free. In the paper under review the author defines a ring \({\mathcal A}(G/K)\) of regular functions as a subalgebra of the inverse limit of finite dimensional Gelfand pairs in the usual sense. This is accompanied by a \(G\)-equivariant map \({\mathcal A}(G/K)\to L^2(G/K)\). The main result of this paper asserts that both for the direct limit of compact symmetric spaces and for the direct limit of commutative nilmanifolds \({\mathcal A}(G/K)\) injects to a dense subspace of \(L^2(G/K)\), so \(L^2(G/K)\) defines a \(G\)-invariant inner product on \({\mathcal A}(G/K)\), the regular representation of \(G\) on \({\mathcal A}(G/K)\) is unitarized, and \(L^2(G/K)\) can be interpreted as a Hilbert space completion of \({\mathcal A}(G/K)\).

MSC:

22E65 Infinite-dimensional Lie groups and their Lie algebras: general properties
17B65 Infinite-dimensional Lie (super)algebras
22E70 Applications of Lie groups to the sciences; explicit representations
43A85 Harmonic analysis on homogeneous spaces

Citations:

Zbl 1180.22021

References:

[1] Benson C., Jenkins J., Ratcliff G.: On Gelfand pairs associated with solvable Lie groups. Trans. Am. Math. Soc. 321, 85–116 (1990) · Zbl 0704.22006 · doi:10.2307/2001592
[2] Carcano G.: A commutativity condition for algebras of invariant functions. Boll. Un. Mat. Italiano 7, 1091–1105 (1987) · Zbl 0632.22005
[3] Chevalley C.: Theory of Lie Groups, I. Princeton University Press, Princeton (1946) · Zbl 0063.00842
[4] Dimitrov I., Penkov I., Wolf J.A.: A Bott–Borel–Weil theory for direct limits of algebraic groups. Am. J. Math. 124, 955–998 (2002) · Zbl 1016.22012 · doi:10.1353/ajm.2002.0025
[5] Kač V.: Some remarks on nilpotent orbits. J. Algebra 64, 190–213 (1980) · Zbl 0431.17007 · doi:10.1016/0021-8693(80)90141-6
[6] Lauret J.: Modified H-type groups and symmetric-like Riemannian spaces. Differ. Geom. Appl. 10, 121–143 (1999) · Zbl 0942.53034 · doi:10.1016/S0926-2245(99)00002-9
[7] Lichtenstein W.: Qualitative behavior of special functions on compact symmetric spaces. J. Funct. Anal. 34, 433–455 (1979) · Zbl 0429.43011 · doi:10.1016/0022-1236(79)90086-7
[8] Moore C.C., Wolf J.A.: Square integrable representations of nilpotent groups. Trans. Am. Math. Soc. 185, 445–462 (1973) · Zbl 0274.22016 · doi:10.1090/S0002-9947-1973-0338267-9
[9] Natarajan L., Rodrí guez-Carrington E., Wolf J.A.: Locally convex Lie groups. Nova J. Algebra Geom. 2, 59–87 (1993) · Zbl 0872.22012
[10] Palais, R.S.: The classification of G-Spaces. Memoirs Am. Math. Soc. 36 (1960) · Zbl 0119.38403
[11] Tannaka T.: Über den Dualitätssatz der nichtkommutativen topologischen Gruppen. Tohoku Math. J. 45, 1–12 (1938) · Zbl 0020.00904
[12] Vinberg E.B.: Commutative homogeneous spaces and co-isotropic symplectic actions. Russ. Math. Surv. 56, 1–60 (2001) · Zbl 0996.53034 · doi:10.1070/RM2001v056n01ABEH000356
[13] Vinberg E.B.: Commutative homogeneous spaces of Heisenberg type. Trans. Moscow Math. Soc. 64, 45–78 (2003) · Zbl 1068.22015
[14] Wolf J.A.: Representations of certain semidirect product groups. J. Funct. Anal. 19, 339–372 (1975) · Zbl 0311.22021 · doi:10.1016/0022-1236(75)90062-2
[15] Wolf J.A.: Direct limits of principal series representations. Compos. Math. 141, 1504–1530 (2005) · Zbl 1086.22009 · doi:10.1112/S0010437X05001430
[16] Wolf J.A.: Harmonic Analysis on Commutative Spaces. Mathematical Surveys and Monographs, vol. 142. American Mathematical Society, Providence (2007) · Zbl 1156.22010
[17] Wolf, J.A.: Infinite dimensional multiplicity free spaces I: Limits of compact commutative spaces. In: Neeb, K.-H., Pianzola, A. (eds.) Developments and Trends in Infinite Dimensional Lie Theory. Birkhäuser, Basel (2010, to appear) {arXiv:0801.3869 (math.RT, math.DG)}
[18] Wolf, J.A.: Infinite dimensional multiplicity free spaces II: Limits of commutative nilmanifolds. In: Proceedings of the Sixth Workshop on Lie Theory and Geometry, Contemporary Mathematics, vol. 491, pp. 179–208 (2009). {arXiv:0801.3866 (math.RT, math.DG)} · Zbl 1180.22021
[19] Yakimova O.S.: Weakly symmetric Riemannian manifolds with reductive isometry group. Math. USSR Sbornik 195, 599–614 (2004) · Zbl 1078.53043
[20] Yakimova, O.S.: Gelfand pairs, Bonner Math. Schriften (Universität Bonn), vol. 374 (2005) · Zbl 1073.22006
[21] Yakimova O.S.: Principal Gelfand pairs. Transform. Groups 11, 305–335 (2006) · Zbl 1108.22015 · doi:10.1007/s00031-005-1110-9
[22] Yang C.T.: On a problem of montgomery. Proc. Am. Math. Soc. 8, 255–257 (1957) · Zbl 0078.16303 · doi:10.1090/S0002-9939-1957-0087040-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.