×

Olshanski spherical pairs related to the Heisenberg group. (English) Zbl 1296.43004

An Olshanski spherical pair \((G,K)\) is the inductive limit of an increasing sequence of Gelfand pairs \((G(n), K(n))\).
How can a spherical function for \((G, K)\) be obtained as limit of spherical functions for \((G(n), K(n))\)?
For a locally compact group \(G\) and a compact subgroup \(K\), \(L^1(K\backslash G/K)\) is the convolution algebra of \(K\)-biinvariant integrable functions on \(G\). Assume that \((G,K)\) is a Gelfand pair, i.e., the algebra \(L^1(K\backslash G/K)\) is commutative. A spherical function for the Gelfand pair \((G, K)\) is a continuous \(K\)-biinvariant function \(\varphi\) on \(G\) with \(\varphi(e)=1\), and \[ \int_{K} \varphi(xky) dk= \varphi(x)\varphi(y), \;\;\;\;\;\;x,y \in G. \] Let \(\Sigma\) denote the Gelfand spectrum of the Gelfand pair \((G, K)\) and \(\varphi(\sigma, x)\) the spherical function associated to \(\sigma \in \Sigma\).
The author considers the semi-direct product \(G(n)=K(n) \ltimes H(n)\), where \(H(n)=W(n) \times \mathbb{R}\) is a Heisenberg group, where \(W(n)\) is a complex Euclidean vector space, Sym(\(n, \mathbb{C}\)), \(M(n, \mathbb{C)}\) or Skew(\(2n, \mathbb{C}\)), and \(K(n)\) is a group of automorphisms of \(H(n)\).
{ Theorem. } (a) Let \(\sigma^{(n)} \in \Sigma_{n}\) be a sequence for the Gelfand pair \((G(n), K(n))\). Assume that \(\sigma^{(n)}\) is convergent and \[ \lim_{n \rightarrow \infty}\sigma^{(n)}= \sigma \in \Sigma. \] Then \[ \lim_{n \rightarrow \infty}\varphi_{n}(\sigma^{(n)},x)=\varphi(\sigma,x) \] uniformly on compact sets in \(H\).
(b) If \(\sigma^{(n)} \in \Sigma_{n}\) is a sequence for the Gelfand pair \((G(n), K(n))\) such that \[ \lim_{n \rightarrow \infty}\varphi_{n}(\sigma^{(n)},x)=\varphi(x) \] uniformly on compact sets in \(H\), where \(\varphi\) is a continuous function on \(H\), then \(\sigma^{(n)}\) is convergent, \(\lim_{n \rightarrow \infty}\sigma^{(n)}= \sigma \in \Sigma\), and \(\varphi(x)=\varphi(\sigma, x)\) on \(H\).

MSC:

43A90 Harmonic analysis and spherical functions
43A80 Analysis on other specific Lie groups
22E27 Representations of nilpotent and solvable Lie groups (special orbital integrals, non-type I representations, etc.)
22E30 Analysis on real and complex Lie groups
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)