×

Continuous spherical Gabor transform for Gelfand pair. (English) Zbl 1469.43002

A spherical Gabor transform is introduced which is based on the Gelfand pairs and their spherical Fourier transforms. Its fundamental properties, such as the Plancherel, Parseval and inversion formula, are established. A number of uncertainty principles (such as Donoho-Stark’s uncertainty principle, Lieb’s inequality and Beckner’s uncertainty principle) associated with this transformation are proved.

MSC:

43A30 Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.
43A85 Harmonic analysis on homogeneous spaces
22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
43A32 Other transforms and operators of Fourier type
Full Text: DOI

References:

[1] Bansal, A.; Kumar, A., Heisenberg uncertainty inequality for Gabor transform, J. Math. Inequal., 10, 3, 737-749 (2016) · Zbl 1377.43003 · doi:10.7153/jmi-10-60
[2] Donoho, DL; Stark, PB, Uncertainty principles and signal recovery, SIAM J. Appl. Math., 49, 3, 906-931 (1989) · Zbl 0689.42001 · doi:10.1137/0149053
[3] Eymard, P., Analyse harmonique euclidienne, Les cours du CIMPA, 6000, 1-144 (1980)
[4] Farashahi, AG; Kamyabi-Gol, R., Continuous Gabor transform for a class of non-Abelian groups, Bull. Belg. Math. Soc. Simon Stevin, 19, 4, 683-701 (2012) · Zbl 1268.43002 · doi:10.36045/bbms/1353695909
[5] Faraut, J.: Analyse harmonique sur les paires de guelfand et les espaces hyperboliques. Anal. Harmon. 315-446 (1982)
[6] Faraut, J., Harzallah, K.: Deux cours d’analyse harmonique, ecole d’d’analyse harmonique de tunis, 1984. Birkhäuser, auser Boston (1987) · Zbl 0622.43001
[7] Faraut, J.; Wakayama, M., Invariant differential operators on the Heisenberg group and Meixner-Pollaczek polynomials, Adv. Pure Appl. Math., 4, 1, 41-66 (2013) · Zbl 1276.32017 · doi:10.1515/apam-2013-0204
[8] Feichtinger, H.G., Strohmer, T.: Advances in Gabor Analysis. Springer, New York (2012) · Zbl 1005.00015
[9] Gabor, D., Theory of communication part. 1: The analysis of information, J. Inst. Electr. Eng. Part III Radio Commun. Eng., 93, 26, 429-441 (1946)
[10] Gröchenig, K.: Foundations of Time-frequency Analysis. Springer, New York (2013) · Zbl 0966.42020
[11] Linares, F.; Ponce, G., Introduction to Nonlinear Dispersive Equations (2014), New York: Springer, New York · Zbl 1310.35002
[12] Saal, L., Gelfand pairs related to groups of Heisenberg type, Rev. Un. Mat. Argentina, 50, 2 (2009) · Zbl 1206.43007
[13] Sharma, J.; Kumar, A., Qualitative uncertainty principle for the Gabor transform on certain locally compact groups, Adv. Pure Appl. Math., 9, 3, 205-220 (2018) · Zbl 1394.43003 · doi:10.1515/apam-2017-0050
[14] Wolf, JA, The uncertainty principle for Gelfand pairs, Nova J. Algebra Geom., 1, 4, 383-396 (1992) · Zbl 0888.43002
[15] Wolf, J.A.: Harmonic Analysis on Commutative Spaces, vol. 142. American Mathematical Society, New York(2007) · Zbl 1156.22010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.