×

Data-driven stochastic inversion via functional quantization. (English) Zbl 1436.62716

Summary: In this paper, we propose a new methodology for solving stochastic inversion problems through computer experiments, the stochasticity being driven by a functional random variables. This study is motivated by an automotive application. In this context, the simulator code takes a double set of simulation inputs: deterministic control variables and functional uncertain variables. This framework is characterized by two features. The first one is the high computational cost of simulations. The second is that the probability distribution of the functional input is only known through a finite set of realizations. In our context, the inversion problem is formulated by considering the expectation over the functional random variable. We aim at solving this problem by evaluating the model on a design, whose adaptive construction combines the so-called stepwise uncertainty reduction methodology with a strategy for an efficient expectation estimation. Two greedy strategies are introduced to sequentially estimate the expectation over the functional uncertain variable by adaptively selecting curves from the initial set of realizations. Both of these strategies consider functional principal component analysis as a dimensionality reduction technique assuming that the realizations of the functional input are independent realizations of the same continuous stochastic process. The first strategy is based on a greedy approach for functional data-driven quantization, while the second one is linked to the notion of space-filling design. Functional PCA is used as an intermediate step. For each point of the design built in the reduced space, we select the corresponding curve from the sample of available curves, thus guaranteeing the robustness of the procedure to dimension reduction. The whole methodology is illustrated and calibrated on an analytical example. It is then applied on the automotive industrial test case where we aim at identifying the set of control parameters leading to meet the pollutant emission standards of a vehicle.

MSC:

62R10 Functional data analysis
60G15 Gaussian processes
62-08 Computational methods for problems pertaining to statistics
62L05 Sequential statistical design
62H25 Factor analysis and principal components; correspondence analysis
62P12 Applications of statistics to environmental and related topics

References:

[1] Abtini, M.: Plans prédictifs à taille fixe et séquentiels pour le krigeage. Ph.D. thesis, Ecole Centrale Lyon (2018)
[2] Bect, J.; Ginsbourger, D.; Li, L.; Picheny, V.; Vazquez, E., Sequential design of computer experiments for the estimation of a probability of failure, Stat. Comput., 22, 3, 773-793 (2012) · Zbl 1252.62081 · doi:10.1007/s11222-011-9241-4
[3] Bect, J., Bachoc, F., Ginsbourger, D.: A supermartingale approach to Gaussian process based sequential design of experiments. arXiv preprint arXiv:1608.01118 (2016) · Zbl 1428.62369
[4] Bolin, D.; Lindgren, F., Excursion and contour uncertainty regions for latent Gaussian models, J. R. Stat. Soc. Ser. B (Stat. Methodol.), 77, 1, 85-106 (2015) · Zbl 1414.62332 · doi:10.1111/rssb.12055
[5] Bonfils, A.; Creff, Y.; Lepreux, O.; Petit, N., Closed-loop control of a SCR system using a \(NO_x\) sensor cross-sensitive to \(NH_3\), IFAC Proc. Vol., 45, 15, 738-743 (2012) · doi:10.3182/20120710-4-SG-2026.00088
[6] Cardot, H.; Ferraty, F.; Sarda, P., Functional Linear Model, Stat. Probab. Lett., 45, 1, 11-22 (1999) · Zbl 0962.62081 · doi:10.1016/S0167-7152(99)00036-X
[7] Chevalier, C.: Fast uncertainty reduction strategies relying on Gaussian process models. Ph.D. thesis (2013)
[8] Chevalier, C., Ginsbourger, D.: Fast Computation of the multi-points expected improvement with applications in batch selection. In: International Conference on Learning and Intelligent Optimization, pp. 59-69. Springer (2013)
[9] Chevalier, C., Ginsbourger, D., Bect, J., Molchanov, I.: Estimating and quantifying uncertainties on level sets using the Vorob’ev expectation and deviation with Gaussian process models. In: mODa 10-Advances in Model-Oriented Design and Analysis, pp. 35-43. Springer (2013)
[10] Chevalier, C.; Picheny, V.; Ginsbourger, D., Kriginv: an efficient and user-friendly implementation of batch-sequential inversion strategies based on kriging, Comput. Stat. Data Anal., 71, 1021-1034 (2014) · Zbl 1471.62043 · doi:10.1016/j.csda.2013.03.008
[11] Chevalier, C.; Bect, J.; Ginsbourger, D.; Vazquez, E.; Picheny, V.; Richet, Y., Fast parallel kriging-based stepwise uncertainty reduction with application to the identification of an excursion set, Technometrics, 56, 4, 455-465 (2014) · doi:10.1080/00401706.2013.860918
[12] Chevalier, C.; Emery, X.; Ginsbourger, D., Fast update of conditional simulation ensembles, Math. Geosci., 47, 7, 771-789 (2015) · Zbl 1323.86020 · doi:10.1007/s11004-014-9573-7
[13] Flury, Ba, Principal points, Biometrika, 77, 1, 33-41 (1990) · Zbl 0691.62053 · doi:10.1093/biomet/77.1.33
[14] French, Jp; Sain, Sr, Spatio-temporal exceedance locations and confidence regions, Ann. Appl. Stat., 7, 3, 1421-1449 (2013) · Zbl 1283.62226 · doi:10.1214/13-AOAS631
[15] Jackson, Da, Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches, Ecology, 74, 8, 2204-2214 (1993) · doi:10.2307/1939574
[16] Janusevskis, J.; Le Riche, R., Simultaneous kriging-based estimation and optimization of mean response, J. Glob. Optim., 55, 2, 313-336 (2013) · Zbl 1287.90043 · doi:10.1007/s10898-011-9836-5
[17] Jin, R.; Chen, W.; Sudjianto, A., An efficient algorithm for constructing optimal design of computer experiments, J. Stat. Plan. Inference, 134, 1, 268-287 (2005) · Zbl 1066.62075 · doi:10.1016/j.jspi.2004.02.014
[18] Johnson, Me; Moore, Lm; Ylvisaker, D., Minimax and maximin distance designs, J. Stat. Plan. Inference, 26, 2, 131-148 (1990) · doi:10.1016/0378-3758(90)90122-B
[19] L’Ecuyer, P.; Lemieux, C.; Dror, M.; L’Ecuyer, P.; Szidarovszky, F., Recent advances in randomized quasi-Monte Carlo methods, Modeling Uncertainty, 419-474 (2005), Berlin: Springer, Berlin
[20] L’Ecuyer, P.; Owen, Ab, Monte Carlo and Quasi-Monte Carlo Methods 2008 (2009), Berlin: Springer, Berlin
[21] Levrard, C.: High-dimensional vector quantization: convergence rates and variable selection. Ph.D. thesis, Universite de Paris 11 (2014)
[22] Luschgy, H.; Pagès, G., Greedy vector quantization, J. Approx. Theory, 198, 111-131 (2015) · Zbl 1398.60074 · doi:10.1016/j.jat.2015.05.005
[23] Luschgy, H.; Pagès, G.; Wilbertz, B., Asymptotically optimal quantization schemes for Gaussian processes on Hilbert spaces, ESAIM Probab. Stat., 14, 93-116 (2010) · Zbl 1217.60029 · doi:10.1051/ps:2008026
[24] Miranda, M.; Bocchini, P., Functional quantization of stationary Gaussian and non-Gaussian random processes, Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures, 2785-2792 (2014)
[25] Miranda, Mj; Bocchini, P., A versatile technique for the optimal approximation of random processes by functional quantization, Appl. Math. Comput., 271, 935-958 (2015) · Zbl 1410.60036
[26] Morris, Md; Mitchell, Tj, Exploratory designs for computational experiments, J. Stat. Plan. Inference, 43, 3, 381-402 (1995) · Zbl 0813.62065 · doi:10.1016/0378-3758(94)00035-T
[27] Nanty, S.; Helbert, C.; Marrel, A.; Pérot, N.; Prieur, C., Sampling, metamodeling, and sensitivity analysis of numerical simulators with functional stochastic inputs, SIAM/ASA J. Uncertain. Quantif., 4, 1, 636-659 (2016) · Zbl 1386.65061 · doi:10.1137/15M1033319
[28] Pagès, G.: Introduction to optimal vector quantization and its applications for numerics. Tech. rep. (2014). https://hal.archives-ouvertes.fr/hal-01034196 · Zbl 1338.60114
[29] Pagès, G.; Printems, J., Functional quantization for numerics with an application to option pricing, Monte Carlo Methods Appl. mcma, 11, 4, 407-446 (2005) · Zbl 1161.91402 · doi:10.1515/156939605777438578
[30] Pagès, G.; Printems, J.; Bensoussan, A.; Zhang, Q., Optimal quantization for finance: from random vectors to stochastic processes, Handbook of Numerical Analysis, 595-648 (2009), Amsterdam: Elsevier, Amsterdam · Zbl 1180.91309
[31] Picheny, V.; Ginsbourger, D.; Roustant, O.; Haftka, Rt; Kim, Nh, Adaptive designs of experiments for accurate approximation of a target region, J. Mech. Des., 132, 7, 071008 (2010) · doi:10.1115/1.4001873
[32] Pronzato, L.; Müller, Wg, Design of computer experiments: space filling and beyond, Stat. Comput., 22, 3, 681-701 (2012) · Zbl 1252.62080 · doi:10.1007/s11222-011-9242-3
[33] Ramsay, Jo, Functional Data Analysis (2006), New York: Wiley Online Library, New York
[34] Roustant, O., Ginsbourger, D., Deville, Y.: DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by Kriging-based metamodeling and optimization. J. Stat. Softw. 51 (2013)
[35] Vazquez, E.; Bect, J., A sequential Bayesian algorithm to estimate a probability of failure, IFAC Proc. Vol., 42, 10, 546-550 (2009) · doi:10.3182/20090706-3-FR-2004.00090
[36] Williams, B.J., Santner, T.J., Notz, W.I.: Sequential design of computer experiments to minimize integrated response functions. Stat. Sin. 10, 1133-1152 (2000) · Zbl 0961.62069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.