×

Characteristic polynomials of random Hermitian matrices and Duistermaat-Heckman localisation on non-compact Kähler manifolds. (English) Zbl 0994.15025

Summary: We reconsider the problem of calculating a general spectral correlation function containing an arbitrary number of products and ratios of characteristic polynomials for a \(N\times N\) random matrix taken from the Gaussian Unitary Ensemble (GUE). Deviating from the standard “supersymmetry” approach, we integrate out Grassmann variables at the early stage and circumvent the use of the Hubbard-Stratonovich transformation in the “bosonic” sector. The method, suggested recently by J. V. Fyodorov [Nucl. Phys. B 621, 643-674 (2002)], is shown to be capable of calculation when reinforced with a generalisation of the Itzykson-Zuber integral to a non-compact integration manifold. We arrive to such a generalisation by discussing the Duistermaat-Heckman localisation principle for integrals over non-compact homogeneous Kähler manifolds. In the limit of large-\(N\) the asymptotic expression for the correlation function reproduces the result outlined earlier by A. V. Andreev and B. D. Simons [Phys. Rev. Lett. 75, 2304 (1995)].

MSC:

15B52 Random matrices (algebraic aspects)
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
53D20 Momentum maps; symplectic reduction
58D20 Measures (Gaussian, cylindrical, etc.) on manifolds of maps
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics

References:

[1] Keating, J. P.; Snaith, N. C., Random matrix theory and \(ζ\)(1/2+it), Commun. Math. Phys., 214, 57 (2000) · Zbl 1051.11048
[2] Keating, J. P.; Snaith, N. C., Random matrix theory and L-functions at \(s=1/2\), Commun. Math. Phys., 214, 91 (2000) · Zbl 1051.11047
[3] Hughes, C. P.; Keating, J. P.; O’Connell, N., Random matrix theory and the derivative of the Riemann zeta function, Proc. R. Soc. London Ser. A, 456, 2611 (2000) · Zbl 0996.11052
[4] Brezin, E.; Hikami, S., Characteristic polynomials of random real symmetric matrices, Commun. Math. Phys., 223, 363-382 (2001) · Zbl 0987.15012
[5] Workshop L-functions and Random Matrix Theory, The American Institute of Mathematics, www.aimath.org/PWN/Irmt/index.html; Workshop L-functions and Random Matrix Theory, The American Institute of Mathematics, www.aimath.org/PWN/Irmt/index.html
[6] Gangardt, D. M., Second quantization approach to characteristic polynomials in RMT, J. Phys. A, 34, 3553 (2001) · Zbl 1156.82325
[7] Gangardt, D. M.; Kamenev, A., Replica treatment of the Calogero-Sutherland model, Nucl. Phys. B, 610, 578 (2001) · Zbl 0971.81195
[8] Haake, F.; Kus, M.; Sommers, H.-J.; Schomerus, H.; Zyckowski, K., Secular determinants of random unitary matrices, J. Phys. A, 29, 3641 (1996) · Zbl 0899.15013
[9] Ketteman, S.; Klakow, D.; Smilansky, U., Characterization of quantum chaos by the autocorrelation function of spectral determinants, J. Phys. A, 30, 3643 (1997) · Zbl 0932.81008
[10] Fyodorov, Y. V., Spectra of random matrices close to unitary and scattering theory for discrete-time systems, (Sollich, P.; etal., Disordered and Complex Systems. Disordered and Complex Systems, AIP Conf. Proc., 553 (2001)) · Zbl 1046.82016
[11] Mehta, M. L.; Normand, J.-M., Moments of the characteristic polynomial in the three ensembles of random matrices, J. Phys. A, 34, 4627 (2001) · Zbl 1129.82309
[12] Kamenev, A.; Mezard, M., Wigner-Dyson statistics from the replica method, J. Phys. A, 32, 4373 (1999) · Zbl 1026.82017
[13] Yurkevich, I. V.; Lerner, I. V., Nonperturbative results for level correlations from the replica nonlinear sigma model, Phys. Rev. B, 60, 3955 (1999)
[14] Andreev, A. V.; Simons, B. D., Correlator of the spectral determinants in quantum chaos, Phys. Rev. Lett., 75, 2304 (1995)
[15] Fyodorov, Y. V.; Khoruzhenko, B. A., Systematic analytical approach to correlation functions of resonances in quantum chaotic scattering, Phys. Rev. Lett., 83, 65 (1999)
[16] Cavagna, A.; Garrahan, J.; Giardina, I., Index distribution of random matrices with an application to disordered systems, Phys. Rev. B, 61, 3960 (2000)
[17] Shirai, T., A factorization of determinant related to some random matrices, J. Stat. Phys., 90, 1449 (1998) · Zbl 0922.34072
[18] Kettemann, S.; Tsvelik, A., Information about the integer quantum Hall transition extracted from the autocorrelation function of spectral determinants, Phys. Rev. Lett., 82, 3689 (1999) · Zbl 1015.81064
[19] Fyodorov, Y. V., Negative moments of characteristic polynomials of random matrices: Ingham-Siegel integral as an alternative to Hubbard-Stratonovich transformation, Nucl. Phys. B, 621 [PM], 643 (2002) · Zbl 1024.82013
[20] Nonnenmacher, S.; Zirnbauer, M. R., Det-Det correlations for quantum maps, dual pair and saddle-point analysis · Zbl 1059.81068
[21] Damgaard, P. H.; Nishigaki, S. M., Universal spectral correlators and massive Dirac operators, Phys. Rev. B, 57, 5299 (1998) · Zbl 0945.81076
[22] Berry, M. V.; Keating, J. P., Clusters of near-degenerate levels dominate negative moments of spectral determinants, J. Phys. A, 35, L1-L6 (2002) · Zbl 1012.81015
[23] Strahov, E., Moments of characteristic polynomials enumerate lexicographic arrays · Zbl 1033.15017
[24] Itzykson, C.; Zuber, J. B., The planar approximation. II, J. Math. Phys., 21, 411 (1980) · Zbl 0997.81549
[25] Harish-Chandra, Differential operators on a semisimple Lie algebra, Proc. Nat. Acad. Sci., 42, 252 (1956) · Zbl 0072.02001
[26] Duistermaat, J. J.; Heckman, G. J., Invent. Math., 72, 153 (1983) · Zbl 0503.58016
[27] Schäfer, L.; Wegner, F., Disordered system with \(n\) orbitals per site: Lagrange formulation, hyperbolic symmetry, and Goldstone modes, Z. Phys. B, 38, 113 (1980)
[28] Farmer, D. W., Long mollifiers of the Riemann zeta-function, Mathematika, 40, 71 (1993) · Zbl 0783.11031
[29] Efetov, K. B., Supersymmetry in Disorder and Chaos (1997), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0990.82501
[30] Verbaarschot, J. J.M.; Zirnbauer, M. R., Critique of the replica trick, J. Phys. A, 17, 1093 (1985)
[31] Rothstein, M. J., Integration on noncompact supermanifolds, Trans. Am. Math. Soc., 299, 387 (1987) · Zbl 0611.58014
[32] Zirnbauer, M. R., Supersymmetry for systems with unitary disorder: circular ensembles, J. Phys. A, 29, 7113 (1996) · Zbl 0905.60095
[33] Szabo, R. J., Microscopic spectrum of the QCD Dirac operator in three dimensions, Nucl. Phys. B, 598, 309 (2001) · Zbl 1046.81554
[34] Guhr, T., Dyson correlation functions and graded symmetry, J. Math. Phys., 32, 336 (1991) · Zbl 0727.60123
[35] Prato, E.; Wu, S., Duistermaat-Heckman measures in a non-compact setting, Compos. Math., 94, 113 (1994) · Zbl 0815.58010
[36] Rossmann, W., Kirilov’s character formula for reductive group, Invent. Math., 48, 207 (1978) · Zbl 0372.22011
[37] Berline, N.; Vergne, M., Fourier transform of orbits of the coadjoint representation, (Representation Theory of Reductive Groups (1983), Birkhäuser: Birkhäuser Basel), 53-57
[38] Paradan, P.-E., The Fourier transform of semi-simple coadjoint orbits, J. Funct. Anal., 163, 152 (1999) · Zbl 0915.22008
[39] Zirnbauer, M. R., Another critique of the replica trick
[40] Bordemann, M.; Forger, M.; Römer, H., Homogeneous Kähler manifolds: paving the way towards new supersymmetric sigma models, Commun. Math. Phys., 102, 605 (1986) · Zbl 0585.53018
[41] Helgason, S., Differential Geometry and Symmetric Spaces (2000), American Mathematical Society · Zbl 0122.39901
[42] Siegel, C. L., Über der analytische Theorie der quadratischen Formen, Ann. Math., 36, 527 (1935) · JFM 61.0140.01
[43] Hua, L. K., Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains (1963), American Mathematical Society, Providence, RI · Zbl 0112.07402
[44] Szabo, R. J., Equivariant localization of path integrals · Zbl 0998.81520
[45] Picken, R. F., The Duistermaat-Heckman integration formula on flag manifolds, J. Math. Phys., 31, 3, 616 (1990) · Zbl 0712.58011
[46] Borel, A., Kählerian coset spaces of semisimple Lie groups, Proc. Natl. Acad. Sci. USA, 40, 1147 (1954) · Zbl 0058.16002
[47] Bar-Moshe, D.; Marinov, M. S., Realization of compact Lie algebras in Kähler manifolds, J. Phys. A, 27, 6287 (1994) · Zbl 0843.58056
[48] Bar-Moshe, D.; Marinov, M. S., Berezin quantization and unitary representations of Lie groups, (Dobrushin, R.; Shubin, M.; Vershik, A., Berezin Memorial (1995), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 0877.58030
[49] Kobayashi, S.; Nomizu, K., Foundations of Differential Geometry, 2 (1969), Interscience: Interscience New York, Chapter 9 · Zbl 0175.48504
[50] Arnold, V. I., Mathematical Methods of Classical Mechanics (1978), Springer · Zbl 0386.70001
[51] Bismut, J. M., Localisation formulas, superconnections, and the index theorem for families, Commun. Math. Phys., 103, 127 (1986) · Zbl 0602.58042
[52] Witten, E., Two-dimensional gauge theories revisited, J. Geom. Phys., 9, 303 (1992) · Zbl 0768.53042
[53] Bando, M.; Kuramoto, T.; Maskawa, T.; Uehara, S., Structure of non-linear realization in supersymmetric theories, Phys. Lett. B, 138, 94 (1984) · Zbl 1022.81760
[54] Itoh, K.; Kugo, T.; Kunitomo, H., Supersymmetric nonlinear realization for arbitrary Kählerian coset space \(G/H\), Nucl. Phys. B, 263, 295 (1986)
[55] Fujii, K.; Funahashi, K., Multi-periodic coherent states and WKB-exactness II, J. Math. Phys., 38, 2812 (1997) · Zbl 0992.46065
[56] David, F.; Duplantier, B.; Guitter, E., Renormalization theory for interacting crumpled manifold, Nucl. Phys. B, 394, 555 (1993)
[57] Guhr, T.; Wettig, T., An Itzykson-Zuber-like integral and diffusion for complex ordinary and supermatrices, J. Math. Phys., 37, 12, 6395 (1996) · Zbl 0878.22014
[58] Jackson, A. D.; Sener, M. K.; Verbaarschot, J. J.M., Finite volume partition functions and Itzykson-Zuber integrals, Phys. Lett. B, 387, 355 (1996)
[59] Cicuta, G. M.; Molinari, L.; Vernizzi, G., Yang-Mills integrals, J. Phys. A, 35, L51 (2002) · Zbl 1013.81038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.