×

A scalable algorithm for many-body dissipative particle dynamics using multiple general purpose graphic processing units. (English) Zbl 07682147

Summary: We present a novel algorithm for the many-body Dissipative Particle Dynamics (DPD) forces calculation which allows to efficiently scale the DL_MESO software package on Multiple General Purpose Graphic Processing Units. Together with the extension to 64-bit integer arrays and addition of hard surface boundary conditions, the proposed algorithm allows to simulate very large complex mesoscale systems up to 14 billion beads. The implementation takes advantages of the CUDA language stream features to overlap the exchange of particle positions and local densities and the computation of the short range forces. We tested a water drop between two plates system using tree of the main European supercomputers: Piz Daint, Marconi and JUWELS. Results shows an improvement on the speedup compared to a naive implementation up to \(1.5x\) when using 1024 GPUs.

MSC:

76-XX Fluid mechanics
82-XX Statistical mechanics, structure of matter

Software:

CUDA; DL_MESO; Gromacs

References:

[1] Hoogerbrugge, P. J.; Koelman, J. M.V. A., Europhys. Lett., 19, 3, 155-160 (1992)
[2] Groot, R. D.; Warren, P. B., J. Chem. Phys., 107, 11, 4423-4435 (1997)
[3] Español, P.; Warren, P. B., J. Chem. Phys., 146, 15, Article 150901 pp. (2017)
[4] Pagonabarraga, I.; Frenkel, D., J. Chem. Phys., 115, 11, 5015-5026 (2001)
[5] Trofimov, S. Y.; Nies, E. L.F.; Michels, M.a. J., J. Chem. Phys., 117, 20, 9383-9394 (2002)
[6] Götz, A. W.; Williamson, M. J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R. C., J. Chem. Theory Comput., 8, 5, 1542-1555 (2012)
[7] Plimpton, S., J. Chem. Phys., 117, 1, 1-19 (1995) · Zbl 0830.65120
[8] Abraham, M. J.O.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E., GROMACS: High Performance Molecular Simulations Through Multi-Level Parallelism from Laptops to Supercomputers 1-2, Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) (2015), Elsevier
[9] Phillips, J. C.; Hardy, D. J.; Maia, J. D.C.; Stone, J. E.; Ribeiro, J. V.; Bernardi, R. C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; McGreevy, R.; Melo, M. C.R.; Radak, B. K.; Skeel, R. D.; Singharoy, A.; Wang, Y.; Roux, B.; Aksimentiev, A.; Luthey-Schulten, Z.; Kalé, L. V.; Schulten, K.; Chipot, C.; Tajkhorshid, E., J. Chem. Phys., 153, 4, Article 044130 pp. (2020)
[10] Harvey, M. J.; Giupponi, G.; Fabritiis, G. D., J. Chem. Theory Comput., 5, 6, 1632-1639 (2009)
[11] Anderson, J. A.; Glaser, J.; Glotzer, S. C., Comput. Math. Sci., 173, Article 109363 pp. (2020)
[12] Xia, Y.; Goral, J.; Huang, H.; Miskovic, I.; Meakin, P.; Deo, M., Phys. Fluids, 29, 5, Article 056601 pp. (2017)
[13] Xia, Y.; Blumers, A.; Li, Z.; Luo, L.; Tang, Y.-H.; Kane, J.; Goral, J.; Huang, H.; Deo, M.; Andrew, M., Comput. Phys. Commun., 247, Article 106874 pp. (2020)
[14] Castagna, J.; Guo, X.; Seaton, M.; O’Cais, A., Comput. Phys. Commun., 251, Article 107159 pp. (2020)
[15] Seaton, M. A.; Anderson, R. L.; Metz, S.; Smith, W., Mol. Simul., 39, 10, 796-821 (2013)
[16] Español, P.; Warren, P., Europhys. Lett., 30, 4, 191-196 (1995)
[17] Swope, W. C.; Andersen, H. C., J. Chem. Phys., 102, 7, 2851-2863 (1995)
[18] Allen, M. P.; Tildesley, D. J., Computer Simulation of Liquids (1987), Oxford University Press · Zbl 0703.68099
[19] Revenga, M.; Zúñiga, I.; Español, P., Comput. Phys. Commun., 121-122, 309-311 (1999)
[20] Gennes, P.-G.; Brochard-Wyart, F.; Quéré, D., Capillarity and wetting phenomena, SpringerLink · Zbl 1139.76004
[21] Warren, P. B., Phys. Rev. Lett., 87, 22, Article 225702 pp. (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.