×

Molecular modeling, simulation and virtual screening of ribosomal phosphoprotein P1 from Plasmodium falciparum. (English) Zbl 1411.92099

Summary: Ribosomal phosphoprotein P1 (RPP1) is acidic phosphoprotein which in association with neutral phosphoprotein P0 and acidic phosphoprotein P2 forms ribosomal P protein complex as (P1)\(_2\)-P0-(P2)\(_2\). P protein is known to be immunogenic and has important role in protein translation. 3D structure of P1 is not known. We have built an ab-initio model of RPP1 of Plasmodium falciparum using I-TASSER. Stereochemical stability of structure was checked using PROCHECK and the normality of the local environment of amino acids was checked using WHATIF. Comparison between known protein structures in PDB database and model protein was done using Dali server. Molecular dynamic simulation study and virtual screening of RPP1 was carried out. Three dimensional model structure of RPP1 was generated and model validation studies proved the model to be steriochemically significant. RPP1 structure was found to be stable at room temperature in water environment demonstrated by 30ns molecular dynamic simulation study. Dali superimposition showed 69% superimposition to known 3D structures in PDB. Further virtual screening and docking studies promoted good interaction of ligands Ecgonine, Prazepam and Ethyl loflazepate with RPP1. The work provides insight for molecular understanding of RPP1 of P. falciparum and can be used for development of antimalarial drugs.

MSC:

92C40 Biochemistry, molecular biology
92D20 Protein sequences, DNA sequences
92C60 Medical epidemiology
Full Text: DOI

References:

[1] Accelrys Software Inc., 2012. Discovery Studio Modeling Environment, Release 3.5, San Diego: Accelrys Software Inc..; Accelrys Software Inc., 2012. Discovery Studio Modeling Environment, Release 3.5, San Diego: Accelrys Software Inc..
[2] Arnold K., Bordoli L., Kopp J., Schwede T. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modeling. Bioinformatics, 22, 195-201; Arnold K., Bordoli L., Kopp J., Schwede T. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modeling. Bioinformatics, 22, 195-201
[3] Berendsen, H. J.C., GROMACS: A message-passing parallel molecular dynamics implementation, Comput. Phys. Commun., 91, 43-56 (1995)
[4] Boguszewska, M.; Tchórzewski, P.; Dukowski, S.; Winiarczyk, N., Grankowski, Subcellular distribution of the acidic ribosomal P-proteins from Saccharomyces cerevisiae in various environmental conditions, Biol. Cell, 94, 3, 139-146 (2002)
[5] Chou, K. C., The biological functions of low-frequency phonons: 6. A possible dynamic mechanism of allosteric transition in antibody molecules, Biopolymers, 26, 285-295 (1987)
[6] Chou, K. C., Review: Low-frequency collective motion in biomacromolecules and its biological functions, Biophys. Chem., 30, 3-48 (1988)
[7] Chou, K. C., Low-frequency resonance and cooperativity of hemoglobin, Trends Biochem. Sci., 14, 212-213 (1989)
[8] Chou, K. C., The convergence-divergence duality in lectin domains of the selectin family and its implications, FEBS Lett., 363, 123-126 (1995)
[9] Chou, K. C., Review: structural bioinformatics and its impact to biomedical science, Curr. Med. Chem., 11, 2105-2134 (2004)
[10] Chou, K. C.; Mao, B., Collective motion in DNA and its role in drug intercalation, Biopolymers, 27, 1795-1815 (1988)
[11] Coleman, R. G.; Sharp, K. A., Protein pockets: inventory, shape, and comparison, J. Chem. Inf. Model., 50, 589-603 (2010)
[12] Das, S.; Basu, H.; Korde, R.; Tewari, R.; Sharma, S., Arrest of nuclear division in plasmodium through blockage of erythrocyte surface exposed ribosomal protein P2, PLoS Pathog., 8, 1-8 (2012)
[13] Dondorp, M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A. P.; Tarning, J.; Lwin, K. M.; Ariey, F.; Hanpithakpong, W.; Lee, S. J., Artemisinin resistance in Plasmodium falciparum malaria, N. Engl. J. Med., 361, 455-467 (2009)
[14] Elkon, K.; Skelly, S.; Parnassa, A.; Moller, W.; Danho, W.; Weissbach, H.; Brot., N., Identification and chemical synthesis of a ribosomal protein antigenic determinant in systemic lupus erythematosus, Proc. Natl. Acad. Sci. USA, 83, 7419-7423 (1986)
[15] Elkon, K. B.; Parnassa, A.; Foster., C. L., Lupus autoantibodies target ribosomal P proteins, J. Exp. Med., 162, 459-471 (1985)
[16] Francoeur, A.; Peebles, C. L.; Heckman, K. J.; Lee, J. C.; Tan, E. M., Identification of ribosomal protein autoantigens, J. Immunol., 135, 2378-2384 (1985)
[17] Gordon, J.; Towbin, H.; Rosenthal, M., Antibodies directed against ribosomal protein determinants in the sera of patients with connective tissue diseases, J. Rheumatol., 9, 247-252 (1982)
[18] Hay, S.I., Guerra, C.A., Gething, P.W., Patil, A.P., Tatem, A.J., et al., A world malaria map: Plasmodium falciparum endemicity in 2007, PLoS Med. 6:3 (2009), 1371; Hay, S.I., Guerra, C.A., Gething, P.W., Patil, A.P., Tatem, A.J., et al., A world malaria map: Plasmodium falciparum endemicity in 2007, PLoS Med. 6:3 (2009), 1371
[19] Hess, B., GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory Comput, 4, 435-447 (2008)
[20] Hess, B.; Bekker, H.; Berendsen, H. J.C.; Fraaije, J. G.E. M., LINCS: a linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463-1472 (1997)
[21] Holm, L.; Rosenström, P., Dali server: conservation mapping in 3D, Nucleic Acids Res., 38, W545-W549 (2010)
[22] Irwin, J. J.; Shoichet, B. K., ZINC - a free database of commercially available compounds for virtual screening, J. Chem. Inf. Model., 45, 177-182 (2005)
[23] Irwin, J. J.; Shoichet, B. K.; Mysinger, M. M.; Huang, N.; Colizzi, F.; Wassam, P.; Cao, Y., Automated docking screens: a feasibility study, J. Med. Chem., 52, 5712-5720 (2009)
[24] Kiefer, F.; Arnold, K.; Künzli, M.; Bordoli, L.; Schwede, T., The SWISS-MODEL repository and associated resources, Nucleic Acids Res., 37, D387-D392 (2009)
[25] Laskowski, R. A.; Macarthur, M. W.; Moss, D. S.; Thornton, J. M., PROCHECK: a program to check the stereochemical quality of protein structures, J. Appl. Crystallogr., 26, 283-290 (1993)
[26] Laurie, A. T.; Jackson, R. M., Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites, Bioinformatics, 21, 1908-1916 (2005)
[27] Lin, S. X.; Lapointe, J., Theoretical and experimental biology in one, J. Biomed. Sci. Eng., 6, 435-442 (2013)
[28] Lindahl, E., GROMACS 3.0: a package for molecular simulation and trajectory analysis, J. Mol. Model., 7, 306-317 (2001)
[29] Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev., 46, 3-26 (2001)
[30] Lorber, D. M.; Shoichet, B. K., Flexible ligand docking using conformational ensembles, Protein Sci., 7, 938-950 (1998)
[31] Lorber, D. M.; Shoichet, B. K., Hierarchical docking of databases of multiple ligand conformations, Curr. Top. Med. Chem., 5, 739-749 (2005)
[32] Martel, P., Biophysical aspects of neutron scattering from vibrational modes of proteins, Prog. Biophys. Mol. Biol., 57, 129-179 (1992)
[33] Mendes, C.; Salgueiro, P.; Gonzalez, V.; Berzosa, P.; Benito, A., Genetic diversity and signatures of selection of drug resistance in Plasmodium populations from both human and mosquito hosts in continental Equatorial Guinea, Malar. J., 12, 114 (2013)
[34] Noedl, H., The need for new antimalarial drugs less prone to resistance, Curr. Pharm. Des, 19, 266-269 (2013)
[35] Peitsch, M. C., Protein modeling by E-mail, Nat. Biotechnol., 13, 658-660 (1995)
[36] Rajeshwari, K.; Patel, K.; Nambeesan, S.; Mehta, M.; Sehgal, A.; Chakraborty, T.; Sharma, S., The P domain of the P0 protein of Plasmodium falciparum protects against challenge with malaria parasites, J. Biol. Chem., 272, 12138-12143 (2013)
[37] Rich, B. E.; Steitz, J. A., Human acidic ribosomal phosphoproteins P0, P1 and P2: analysis of cDNA clones, in vitro synthesis and assembly, Mol. Cell. Biol., 7, 4065-4074 (1987)
[38] Robles, S.; Remacha, M.; Vilella; Zinker, S.; Ballesta, J. P.G., The acidic ribosomal proteins as regulators of the eukaryotic ribosomal activity, Biochim. Biophys. Acta, 1050, 51-55 (1990)
[39] Roy, A.; Kucukural, A.; Zhang, Y., I-TASSER: a unified platform for automated protein structure and function prediction, Nat. Protoc., 5, 725-738 (2010)
[40] Roy, A.; Yang, Jianyi; Zhang, Y., COFACTOR: an accurate comparative algorithm for structure-based protein function annotation, Nucleic Acids Res., 40, W471-W477 (2012)
[41] Schnell, J. R.; Chou, J. J., Structure and mechanism of the M2 proton channel of influenza A virus, Nature, 451, 591-595 (2008)
[42] Scott, W. R.P.; Hu1nenberger, P. H.; Tironi, I. G.; Mark, A. E.; Billeter, S. R.; Fennen, J.; Torda, A. E.; Huber, T.; Kru1ger, P.; van Gunsteren, W. F., The GROMOS biomolecular simulation program package, J. Phys. Chem. A, 103, 3596-3607 (1999)
[43] Towbin, H.; Ramjoue, H.; Kuster, H.; Liverani, D.; Gordon, J., Monoclonal antibodies against eukaryotic ribosomes: use to characterize a ribosomal protein not previously identified and antigenically related to the acidic phosphoproteins PI/P2, J. Biol. Chem., 257, 12709-12715 (1982)
[44] Uchiumi, T.; Kominami, R., Direct evidence for interaction of the conserved GTPase domain within 28S RNA with mammalian ribosomal acidic phosphoproteins and L12, J. Biol. Chem., 267, 19179-19185 (1992)
[45] Uchiumi, T.; Wahha, A. J.; Traut Proc, R. R., Topography and stoichiometry of acidic proteins in large ribosomal subunits from Artemia salina as determined by cross linking, Proc. Natl. Acad. Sci. USA, 84, 5580-5584 (1987)
[46] Vriend, G., WHAT IF: a molecular modeling and drug design program, J. Mol. Gr., 8, 52-56 (1990)
[47] Wang, J. F.; Chou, K. C., Insight into the molecular switch mechanism of human Rab5a from molecular dynamics simulations, Biochem. Biophys. Res. Commun., 390, 608-612 (2009)
[48] Zhang, Yang, I-TASSER server for protein 3D structure prediction, BMC Bioinformatics, 9, 40 (2008)
[49] van der Spoel, D., GROMACS: fast, flexible, and free, J. Comput. Chem., 26, 1701-1718 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.