×

\(\Pi\)4U: a high performance computing framework for Bayesian uncertainty quantification of complex models. (English) Zbl 1352.65009

Summary: We present {\(\Pi\)}4U, an extensible framework, for non-intrusive Bayesian Uncertainty Quantification and Propagation (UQ+P) of complex and computationally demanding physical models, that can exploit massively parallel computer architectures. The framework incorporates Laplace asymptotic approximations as well as stochastic algorithms, along with distributed numerical differentiation and task-based parallelism for heterogeneous clusters. Sampling is based on the Transitional Markov Chain Monte Carlo (TMCMC) algorithm and its variants. The optimization tasks associated with the asymptotic approximations are treated via the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). A modified subset simulation method is used for posterior reliability measurements of rare events. The framework accommodates scheduling of multiple physical model evaluations based on an adaptive load balancing library and shows excellent scalability. In addition to the software framework, we also provide guidelines as to the applicability and efficiency of Bayesian tools when applied to computationally demanding physical models. Theoretical and computational developments are demonstrated with applications drawn from molecular dynamics, structural dynamics and granular flow.

MSC:

65C05 Monte Carlo methods
62F15 Bayesian inference
65Y10 Numerical algorithms for specific classes of architectures
65Y15 Packaged methods for numerical algorithms
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
76T25 Granular flows
74S30 Other numerical methods in solid mechanics (MSC2010)
76M25 Other numerical methods (fluid mechanics) (MSC2010)
Full Text: DOI

References:

[1] Karniadakis, G.; Glimm, J., Uncertainty quantification in simulation science, J. Comput. Phys., 217, 1, 1-4 (2006)
[2] Najm, H. N., Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics, Annu. Rev. Fluid Mech., 41, 1, 35-52 (2008) · Zbl 1168.76041
[3] Owhadi, H.; Scovel, C.; Sullivan, T.; McKerns, M.; Ortiz, M., Optimal uncertainty quantification, SIAM Rev., 55, 2, 271-345 (2013) · Zbl 1278.60040
[4] Beck, J. L.; Yuen, K. V., Model selection using response measurements: Bayesian probabilistic approach, J. Eng. Mech., 130, 2, 192-203 (2004)
[5] Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P., Bayesian uncertainty quantification and propagation in molecular dynamics simulations: a high performance computing framework, J. Chem. Phys., 137, 14, 144103 (2012), (19 pp.)
[6] Papadimitriou, C.; Beck, J. L.; Katafygiotis, L. S., Asymptotic expansions for reliability and moments of uncertain systems, J. Eng. Mech., 123, 12, 1219-1229 (1997)
[7] Stenger, F., Asymptotic approximation of certain integrals, Not. Am. Math. Soc., 16, 1, 95 (1969)
[8] Haario, H.; Laine, M.; Mira, A.; Saksman, E., Dram: efficient adaptive MCMC, Stat. Comput., 16, 339-354 (2006)
[9] Ching, J. Y.; Chen, Y. C., Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging, J. Eng. Mech., 133, 7, 816-832 (2007)
[10] Cheng, M. H.; Wu, S.; Heaton, T. H.; Beck, J. L., Earthquake early warning application to buildings, Eng. Struct., 60, 155-164 (2014)
[11] Adams, B.; Bohnhoff, W.; Dalbey, K.; Eddy, J.; Eldred, M.; Gay, D.; Haskell, K.; Hough, P.; Swiler, L., DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: Version 5.3, User’s Manual SAND2010-2183 (May 2013), Sandia technical report
[13] McKerns, M.; Strand, L.; Sullivan, T.; Fang, A.; Aivazis, M., Building a framework for predictive science, (The 10th Python in Science Conference. The 10th Python in Science Conference, SCIPY 2011 (2011)), 1-12
[14] Prudencio, E. E.; Schulz, K. W., The Parallel C++ Statistical Library ‘QUESO’: quantification of uncertainty for estimation, simulation and optimization, (Euro-Par 2011: Parallel Processing Workshops. Euro-Par 2011: Parallel Processing Workshops, Lect. Notes Comput. Sci., vol. 7155 (2012), Springer: Springer Berlin, Heidelberg), 398-407
[15] Prudencio, E.; Cheung, S. H., Parallel adaptive multilevel sampling algorithms for the Bayesian analysis of mathematical models, Int. J. Uncertain. Quantificat., 2, 3, 215-237 (2012) · Zbl 1320.65022
[16] Sukys, J., Adaptive load balancing for massively parallel multi-level Monte Carlo solvers, (Parallel Processing and Applied Mathematics - 10th International Conference, Revised Selected Papers, Part I. Parallel Processing and Applied Mathematics - 10th International Conference, Revised Selected Papers, Part I, PPAM 2013, Warsaw, Poland, September 8-11, 2013 (2013)), 47-56
[17] Hadjidoukas, P. E.; Lappas, E.; Dimakopoulos, V. V., A runtime library for platform-independent task parallelism, (20th International Conference on Parallel, Distributed and Network-Based Processing (PDP), Euromicro (2012)), 229-236
[18] Galbally, D.; Fidkowski, K.; Willcox, K.; Ghattas, O., Non-linear model reduction for uncertainty quantification in large-scale inverse problems, Int. J. Numer. Methods Eng., 81, 12, 1581-1608 (2010) · Zbl 1183.76837
[19] Hansen, N.; Muller, S. D.; Koumoutsakos, P., Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES), Evol. Comput., 11, 1, 1-18 (2003)
[20] Au, S.; Beck, J., Estimation of small failure probabilities in high dimensions by subset simulation, Probab. Eng. Mech., 16, 263-277 (2001)
[21] Beck, J. L.; Katafygiotis, L. S., Updating models and their uncertainties. I: Bayesian statistical framework, J. Eng. Mech., 124, 4, 455-461 (1998)
[22] Katafygiotis, L. S.; Beck, J. L., Updating models and their uncertainties. II: Model identifiability, J. Eng. Mech., 124, 4, 463-467 (1998)
[23] Beck, J. L., Bayesian system identification based on probability logic, Struct. Control Health Monit., 17, 7, 825-847 (2010)
[24] Yuen, K.-V., Bayesian Methods for Structural Dynamics and Civil Engineering (2010), Wiley-Vch Verlag
[25] Vanik, M. W.; Beck, J. L.; Au, S. K., Bayesian probabilistic approach to structural health monitoring, J. Eng. Mech., 126, 7, 738-745 (2000)
[26] Hastings, W. K., Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 1, 97-109 (1970) · Zbl 0219.65008
[27] Girolami, M.; Calderhead, B., Riemann manifold Langevin and Hamiltonian Monte Carlo methods, J. R. Stat. Soc., Ser. B, Stat. Methodol., 73, 123-214 (2011) · Zbl 1411.62071
[28] Green, P. J., Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, 82, 4, 711-732 (1995) · Zbl 0861.62023
[29] Ter Braak, C. J.; Vrugt, J. A., Differential evolution Markov chain with snooker updater and fewer chains, Stat. Comput., 18, 4, 435-446 (2008)
[30] Katafygiotis, L.; Lam, H.-F.; Papadimitriou, C., Treatment of unidentifiability in structural model updating, Adv. Struct. Eng., 3, 1, 19-39 (2000)
[31] Chib, S., Marginal likelihood from the Gibbs output, J. Am. Stat. Assoc., 90, 432, 1313-1321 (1995) · Zbl 0868.62027
[32] Friel, N.; Pettitt, A. N., Marginal likelihood estimation via power posteriors, J. R. Stat. Soc., Ser. B, Stat. Methodol., 70, 589-607 (2008) · Zbl 05563360
[33] Doucet, A.; De Freitas, N.; Gordon, N., Sequential Monte Carlo Methods in Practice (2001), Springer-Verlag · Zbl 0967.00022
[34] Papadimitriou, C.; Katafygiotis, L., A Bayesian methodology for structural integrity and reliability assessment, Int. J. Adv. Manuf. Syst., 4, 1, 93-100 (2001)
[35] Papadimitriou, C.; Beck, J. L.; Katafygiotis, L. S., Updating robust reliability using structural test data, Probab. Eng. Mech., 16, 2, 103-113 (2001)
[36] Beck, J. L.; Taflanidis, A. A., Prior and posterior robust stochastic predictions for dynamical systems using probability logic, Int. J. Uncertain. Quantificat., 3, 4, 271-288 (2013) · Zbl 1513.37048
[37] Jensen, H.; Vergara, C.; Papadimitriou, C.; Millas, E., The use of updated robust reliability measures in stochastic dynamical systems, Comput. Methods Appl. Mech. Eng., 267, 293-317 (2013) · Zbl 1286.62086
[38] Ntotsios, E.; Papadimitriou, C., Multi-objective optimization algorithms for finite element model updating, (ISMA2008 International Conference on Noise and Vibration Engineering. ISMA2008 International Conference on Noise and Vibration Engineering, Leuven (2008)), 1895-1909
[39] Papadimitriou, D. I.; Papadimitriou, C., Optimal sensor location for model parameter estimation in CFD, (21st AIAA Computational Fluid Dynamics Conference (2013), American Institute of Aeronautics and Astronautics), 1-10
[40] Flath, H. P.; Wilcox, L. C.; Akcelik, V.; Hill, J.; Waanders, B. V.; Ghattas, O., Fast algorithms for Bayesian uncertainty quantification in large-scale linear inverse problems based on low-rank partial Hessian approximations, SIAM J. Sci. Comput., 33, 1, 407-432 (2011) · Zbl 1229.65174
[41] Asselmeyer, T.; Ebeling, W.; Rose, H., Evolutionary strategies of optimization, Phys. Rev. E, 56, 1, 1171-1180 (1997)
[42] Barnes, B. C.; Gelb, L. D., Meta-optimization of evolutionary strategies for empirical potential development: application to aqueous silicate systems, J. Chem. Theory Comput., 3, 5, 1749-1764 (2007)
[43] Zhao, J.; Han, C. Z.; Wei, B., Binary particle swarm optimization with multiple evolutionary strategies, Sci. China, Inf. Sci., 55, 11, 2485-2494 (2012) · Zbl 1270.68279
[44] Hadjidoukas, P. E.; Angelikopoulos, P.; Voglis, C.; Papageorgiou, D. G.; Lagaris, I. E., NDL-v2.0: a new version of the numerical differentiation library for parallel architectures, Comput. Phys. Commun., 185, 7, 2217-2219 (2014) · Zbl 1352.65004
[45] Beck, J. L.; Au, S. K., Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation, J. Eng. Mech., 128, 4, 380-391 (2002)
[46] Hadjidoukas, P.; Voglis, C.; Dimakopoulos, V.; Lagaris, I.; Papageorgiou, D., Supporting adaptive and irregular parallelism for non-linear numerical optimization, Appl. Math. Comput., 231, 544-559 (2014) · Zbl 1410.90249
[47] Kincaid, D.; Cheney, W., Mathematics of Scientific Computing (1996), Brooks/Cole: Brooks/Cole Pacific Grove, CA · Zbl 0877.65002
[48] Rick, S., A reoptimization of the five-site water potential (TIP5P) for use with Ewald sums, J. Chem. Phys., 120, 6085-6093 (2004)
[49] Iordanov, T. D.; Schenter, G. K.; Garrett, B. C., Sensitivity analysis of thermodynamic properties of liquid water: a general approach to improve empirical potentials, J. Phys. Chem. A, 110, 2, 762-771 (2005)
[50] Jorgensen, W. L.; Jenson, C.; Mahoney, M. W., Liquid water models: beyond TIP4P and the density (t) problem, Abstr. Pap., Am. Chem. Soc., 218, U314 (1999)
[51] Cailliez, F.; Bourasseau, A.; Pernot, P., Calibration of forcefields for molecular simulation: sequential design of computer experiments for building cost-efficient kriging metamodels, J. Comput. Chem., 35, 2, 130-149 (2014)
[52] Rizzi, F.; Najm, H.; Debusschere, B.; Sargsyan, K.; Salloum, M.; Adalsteinsson, H.; Knio, O., Uncertainty quantification in MD simulations. Part II: Bayesian inference of force-field parameters, Multiscale Model. Simul., 10, 4, 1460-1492 (2012) · Zbl 1304.62152
[53] Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P., Data driven, predictive molecular dynamics for nanoscale flow simulations under uncertainty, J. Phys. Chem. B, 117, 47, 14808-14816 (2013)
[54] Soper, A. K., The radial distribution functions of water as derived from radiation total scattering experiments: is there anything we can say for sure?, ISRN Phys. Chem., 279463 (2013)
[55] Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M. R.; Smith, J. C.; Kasson, P. M.; van der Spoel, D.; Hess, B.; Lindahl, E., Gromacs 4.5: a high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics, 29, 7, 845-854 (2013)
[56] Simoen, E.; Papadimitriou, C.; Lombaert, G., On prediction error correlation in Bayesian model updating, J. Sound Vib., 332, 18, 4136-4152 (2013)
[57] Mahoney, M.; Jorgensen, W., A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions, J. Chem. Phys., 112, 8910-8922 (2000)
[58] Papadimitriou, C.; Papadioti, D.-C., Component mode synthesis techniques for finite element model updating, Comput. Struct., 126, 15-28 (2013)
[59] Craig, R. R.; Bampton, M. C.C., Coupling of substructures for dynamic analyses, AIAA J., 6, 7, 1313-1323 (1968) · Zbl 0159.56202
[60] Tsuji, Y.; Tanaka, T.; Ishida, T., Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe, Powder Technol., 71, 3, 239-250 (1992)
[61] Pöschel, T.; Schwager, T., Computational Granular Dynamics - Models and Algorithms, vol. 8 (2006), Springer-Verlag
[62] Kruggel-Emden, H.; Wirtz, S.; Scherer, V., A study on tangential force laws applicable to the discrete element method (DEM) for materials with viscoelastic or plastic behavior, Chem. Eng. Sci., 63, 6, 1523-1541 (2008)
[63] Brendel, L.; Dippel, S., Lasting contacts in molecular dynamics simulations, (Physics of Dry Granular Media (1998), Kluwer Academic Publishers), 3-31
[64] Hirshfeld, D.; Rapaport, D., Granular flow from a silo: discrete-particle simulations in three dimensions, Eur. Phys. J. E, Soft Matter Biol. Phys., 4, 2, 193-199 (2001)
[65] Hadjidoukas, P. E.; Angelikopoulos, P.; Rossinelli, D.; Alexeev, D.; Papadimitriou, C.; Koumoutsakos, P., Bayesian uncertainty quantification and propagation for discrete element simulations of granular materials, Comput. Methods Appl. Mech. Eng., 282, 218-238 (2014) · Zbl 1423.74956
[66] Schwager, T.; Becker, V.; Pöschel, T., Coefficient of tangential restitution for viscoelastic spheres, Eur. Phys. J. E, 27, 1, 107-114 (2008)
[67] Dong, H.; Moys, M. H., Experimental study of oblique impacts with initial spin, Powder Technol., 161, 1, 22-31 (2006)
[68] Chiachio, M.; Beck, J.; Chiachio, J.; Rus, G., Approximate Bayesian computation by subset simulation, SIAM J. Sci. Comput., 36, 3, A1339-A1358 (2014) · Zbl 1297.65013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.