×

Molecular dynamics study of multicomponent droplet dissolution in a sparingly miscible liquid. (English) Zbl 1419.76637

Summary: The dissolution of a multicomponent nanodrop in a sparingly miscible liquid is studied by molecular dynamics (MD) simulations. We studied both binary and ternary systems, in which nanodroplets are formed from one and two components, respectively. Whereas for a single-component droplet the dissolution can easily be calculated, the situation is more complicated for a multicomponent drop, as the interface concentrations of the drop constituents depend on the drop composition, which changes with time. In this study, the variation of the interface concentration with the drop composition is determined from independent ‘numerical experiments’, which are then used in the theoretical model for the dissolution dynamics of a multicomponent drop. The MD simulations reveal that when the interaction strengths between the drop constituents and the surrounding bulk liquid are significantly different, the concentration of the more soluble component near the drop interface may become larger than in the drop bulk. This effect is the larger the smaller the drop radius. While the present study is limited to binary and ternary systems, the same method can be easily extended to a larger number of components.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows

Software:

Gromacs

References:

[1] Abrams, D. S.; Prausnitz, J. M., Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems, AIChE J., 21, 116-128, (1975) · doi:10.1002/aic.690210115
[2] Ahuja, S., Handbook of Bioseparations, (2000), Academic
[3] Anderson, T. F.; Prausnitz, J. M., Application of the UNIQUAC equation to calculation of multicomponent phase equilibria: 1. Vapor – liquid equilibria, Ind. Engng Chem. Process Des. Dev., 17, 552-561, (1978) · doi:10.1021/i260068a028
[4] Anderson, T. F.; Prausnitz, J. M., Application of the UNIQUAC equation to calculation of multicomponent phase equilibria: 2. Liquid – liquid equilibria, Ind. Engng Chem. Process Des. Dev., 17, 561-567, (1978) · doi:10.1021/i260068a029
[5] Brenn, G.; Deviprasath, L. J.; Durst, F.; Fink, C., Evaporation of acoustically levitated multi-component liquid droplets, Intl J. Heat Mass Transfer, 50, 25, 5073-5086, (2007) · Zbl 1140.80382 · doi:10.1016/j.ijheatmasstransfer.2007.07.036
[6] Carslaw, H. S.; Jaeger, J. C., Conduction of Heat in Solids, (1959), Clarendon · Zbl 0972.80500
[7] Chasanis, P.; Brass, M.; Kenig, E. Y., Investigation of multicomponent mass transfer in liquid – liquid extraction systems at microscale, Intl J. Heat Mass Transfer, 53, 19, 3758-3763, (2010) · Zbl 1194.80013 · doi:10.1016/j.ijheatmasstransfer.2010.04.026
[8] Chu, S.; Prosperetti, A., Dissolution and growth of a multicomponent drop in an immiscible liquid, J. Fluid Mech., 798, 787-811, (2016) · Zbl 1422.76196 · doi:10.1017/jfm.2016.310
[9] Dekker, M. R. V. K.; Triet, K.; Van’T Weijers, S. R.; Baltussen, J. W. A.; Laane, C.; Bijsterbosch, B. H., Enzyme recovery by liquid – liquid extraction using reversed micelles, Chem. Engng J., 33, 2, B27-B33, (1986) · doi:10.1016/0300-9467(86)80050-8
[10] Dietrich, E.; Rump, M.; Lv, P.; Kooij, E. S.; Zandvliet, H. J. W.; Lohse, D., Segregation in dissolving binary-component sessile droplets, J. Fluid Mech., 812, 349-369, (2017) · Zbl 1383.76464 · doi:10.1017/jfm.2016.802
[11] Dietrich, E.; Wildeman, S.; Visser, C. W.; Hofhuis, K.; Kooij, E. S.; Zandvliet, H. J. W.; Lohse, D., Role of natural convection in the dissolution of sessile droplets, J. Fluid Mech., 794, 45-67, (2016) · Zbl 1462.76175 · doi:10.1017/jfm.2016.158
[12] Epstein, P. S.; Plesset, M. S., On the stability of gas bubbles in liquid – gas solutions, J. Chem. Phys., 18, 1505-1509, (1950) · doi:10.1063/1.1747520
[13] Frenkel, D.; Smit, B., Understanding Molecular Simulation, (2002), Academic
[14] Fukumoto, K.; Yoshizawa, M.; Ohno, H., Room temperature ionic liquids from 20 natural amino acids, J. Am. Chem. Soc., 127, 8, 2398-2399, (2005) · doi:10.1021/ja043451i
[15] Gunko, V. M.; Nasiri, R.; Sazhin, S. S.; Lemoine, F.; Grisch, F., A quantum chemical study of the processes during the evaporation of real-life diesel fuel droplets, Fluid Phase Equilib., 356, 146-156, (2013) · doi:10.1016/j.fluid.2013.07.022
[16] Handlos, A. E.; Baron, T., Mass and heat transfer from drops in liquid – liquid extraction, AIChE J., 3, 1, 127-136, (1957) · doi:10.1002/aic.690030121
[17] Hao, L.; Leaist, D. G., Binary mutual diffusion coefficients of aqueous alcohols. Methanol to 1-heptanol, J. Chem. Engng Data, 41, 2, 210-213, (1996) · doi:10.1021/je950222q
[18] Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E., Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory Comput., 4, 435-447, (2008) · doi:10.1021/ct700301q
[19] Kneer, R.; Schneider, M.; Noll, B.; Wittig, S., Diffusion controlled evaporation of a multicomponent droplet: theoretical studies on the importance of variable liquid properties, Intl J. Heat Mass Transfer, 36, 9, 2403-2415, (1993) · doi:10.1016/S0017-9310(05)80124-3
[20] Kula, M. R., Kroner, K. H. & Hustedt, H.1982Purification of enzymes by liquid – liquid extraction. In Reaction Engineering, Advances in Biochemical Engineering, vol. 24, pp. 73-118. Springer.
[21] Landau, L. D. & Lifshitz, E. V.1959Course of Theoretical Physics. vol. 6. Pergamon.
[22] Lohse, D., Towards controlled liquid – liquid microextraction, J. Fluid Mech., 804, 1-4, (2016) · doi:10.1017/jfm.2016.421
[23] Philippi, P. C.; Mattila, K. K.; Siebert, D. N.; Dos Santos, Lís Oe; Júnior, L. A. Hegele; Surmas, R., Lattice-Boltzmann equations for describing segregation in non-ideal mixtures, J. Fluid Mech., 713, 564-587, (2012) · Zbl 1284.76394 · doi:10.1017/jfm.2012.473
[24] Prosperetti, A., Advanced Mathematics for Applications, (2011), Cambridge University Press · Zbl 1208.00002
[25] Rydberg, J., Solvent Extraction Principles and Practice, Revised and Expanded, (2004), CRC · doi:10.1201/9780203021460
[26] Shchekina, A. K.; Rusanov, A. I., Generalization of the Gibbs-Kelvin-Köhler and Ostwald-Freundlich equations for a liquid film on a soluble nanoparticle, J. Chem. Phys., 129, (2008)
[27] Su, J. T.; Needham, D., Mass transfer in the dissolution of a multicomponent liquid droplet in an immiscible liquid environment, Langmuir, 29, 13339-13345, (2013) · doi:10.1021/la402533j
[28] Tamim, J.; Hallett, W. L. H., A continuous thermodynamics model for multicomponent droplet vaporization, Chem. Engng Sci., 50, 18, 2933-2942, (1995) · doi:10.1016/0009-2509(95)00131-N
[29] Tonini, S.; Cossali, G. E., A multi-component drop evaporation model based on analytical solution of Stefan-Maxwell equations, Intl J. Heat Mass Transfer, 92, 184-189, (2016) · doi:10.1016/j.ijheatmasstransfer.2015.08.014
[30] Van De Ven-Lucassen, I. M. J. J.; Vlugt, T. J. H.; Van Der Zanden, A. J. J.; Kerkhof, P. J. A. M., Using molecular dynamics to obtain Maxwell-Stefan diffusion coefficients in liquid systems, Mol. Phys., 94, 3, 495-503, (1998) · doi:10.1080/00268979809482342
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.