×

Wavelets as basis functions to represent the coarse-graining potential in multiscale coarse graining approach. (English) Zbl 1349.65736

Summary: In this paper, we apply Multiresolution Analysis (MRA) to develop sparse but accurate representations for the Multiscale Coarse-Graining (MSCG) approximation to the many-body potential of mean force. We rigorously framed the MSCG method into MRA so that all the instruments of this theory become available together with a multitude of new basis functions, namely the wavelets. The coarse-grained (CG) force field is hierarchically decomposed at different resolution levels enabling to choose the most appropriate wavelet family for each physical interaction without requiring an a priori knowledge of the details localization. The representation of the CG potential in this new efficient orthonormal basis leads to a compression of the signal information in few large expansion coefficients. The multiresolution property of the wavelet transform allows to isolate and remove the noise from the CG force-field reconstruction by thresholding the basis function coefficients from each frequency band independently. We discuss the implementation of our wavelet-based MSCG approach and demonstrate its accuracy using two different condensed-phase systems, i. e. liquid water and methanol. Simulations of liquid argon have also been performed using a one-to-one mapping between atomistic and CG sites. The latter model allows to verify the accuracy of the method and to test different choices of wavelet families. Furthermore, the results of the computer simulations show that the efficiency and sparsity of the representation of the CG force field can be traced back to the mathematical properties of the chosen family of wavelets. This result is in agreement with what is known from the theory of multiresolution analysis of signals.

MSC:

65T60 Numerical methods for wavelets
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)

Software:

Gromacs
Full Text: DOI

References:

[1] Reith, D.; Puetz, M.; Mueller-Plathe, F., Deriving effective mesoscale potentials from atomistic simulations, J. Comput. Chem., 24, 1624-1636 (2003)
[2] Lyubartsev, A. P.; Laksonen, A., Calculation of effective interaction potentials from radial distribution functions: a reverse Monte Carlo approach, Phys. Rev. E, 52, 3730-3737 (1995)
[3] Soper, A. K., Empirical potential Monte Carlo simulation of fluid structures, Chem. Phys., 202, 295-306 (1996)
[4] Izvekov, S.; Voth, G. A., A multiscale coarse-graining method for biomolecular systems, J. Phys. Chem. Lett., 109, 2469-2473 (2005)
[5] Izvekov, S.; Voth, G. A., Multiscale coarse graining of liquid state systems, J. Chem. Phys., 123, 134105 (2005)
[6] Noid, W. G.; Chu, J.-W.; Ayton, G. S.; Krishna, V.; Izvekov, S.; Voth, G. A.; Das, A.; Andersen, H. C., The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models, J. Chem. Phys., 128, 244114 (2008)
[7] Noid, W. G.; Chu, J.-W.; Ayton, G. S.; Krishna, V.; Izvekov, S.; Voth, G. A.; Das, A.; Andersen, H. C., The multiscale coarse-graining method. II. A rigorous bridge between atomistic and coarse-grained models, J. Chem. Phys., 128, 244115 (2008)
[8] Das, A.; Andersen, H. C., The multiscale coarse-graining method. V. Isothermal-isobaric ensemble, J. Chem. Phys., 132, 164106 (2010)
[9] Lu, L.; Izvekov, S.; Das, A.; Andersen, H.; Voth, G. A., Efficient, regularized, and scalable algorithms for multiscale coarse-graining, J. Chem. Theory Comput., 6, 954-965 (2010)
[10] Ismail, A.; Rutledge, G.; Stephanopoulos, G., Topological coarse-graining of polymer chains using wavelet-accelerated Monte Carlo. I. Freely-jointed chains, J. Chem. Phys., 122, 23, 234901 (2005)
[11] Donoho, D., De-noising by soft-thresholding, IEEE Trans. Inf. Theory, 41, 3, 613-627 (1995) · Zbl 0820.62002
[12] Donoho, D.; Johnstone, I., Adapting to unknown smoothness via wavelet shrinkage, J. Am. Stat. Assoc., 1200-1224 (1995) · Zbl 0869.62024
[13] Das, A.; Andersen, H. C., The multiscale coarse-graining method. III. A test of pairwise additivity of the coarse-grained potential and of new basis functions, J. Chem. Phys., 131, 034102 (2009)
[14] Lu, L.; Voth, G. A., Systematic coarse-graining of a multicomponent lipid bilayer, J. Phys. Chem. B, 113, 1501 (2009)
[15] Das, A.; Andersen, H. C., The multiscale coarse-graining method. VIII. Multiresolution hierarchical basis functions and basis function selection in the construction of coarse-grained force fields, J. Chem. Phys., 136, 194113 (2012)
[16] Friedman, J.; Hastie, T.; Hölfling, H.; Tibshirani, R., Pathwise coordinate optimization, Ann. Appl. Stat., 1, 2, 302-332 (2007) · Zbl 1378.90064
[17] Bertoluzza, S.; Falletta, S., Building wavelets on \(] 0, 1 [\) at large scales, J. Fourier Anal. Appl., 9, 261-288 (2003) · Zbl 1047.42023
[18] Lindahl, E.; Hess, B.; Spoel, D., GROMACS 3.0: a package for molecular simulation and trajectory analysis, J. Mol. Model., 7, 5, 306-317 (2001)
[19] Daubechies, I., Ten Lectures on Wavelets, CBMS/NSF Series in Applied Math., vol. 61 (1992), SIAM · Zbl 0776.42018
[20] Hockney, R. W.; Goel, S. P.; Eastwood, J., Quiet high-resolution computer models of a plasma, J. Comput. Phys., 14, 148-158 (1974)
[21] Rahman, A., Correlations in the motion of atoms in liquid argon, Phys. Rev., 136, 2A, A405-A411 (1964)
[22] Bussi, G.; Donadio, D.; Parrinello, M., Canonical sampling through velocity rescaling, J. Chem. Phys., 126, 014101 (2007)
[23] Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J., Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc., 118, 11225-11236 (1996)
[24] Cho, H. M.; Chu, J. W., Inversion of radial distribution functions to pair forces by solving the Yvon-Born-Green equation iteratively, J. Chem. Phys., 131, 134107 (2009)
[25] Mullinax, J. W.; Noid, W. G., Generalized Yvon-Born-Green theory for molecular systems, Phys. Rev. Lett., 103, 198104 (2009)
[26] Mullinax, J. W.; Noid, W. G., Generalized Yvon-Born-Green theory for determining coarse-grained interaction potentials, J. Phys. Chem. C, 12, 114, 5661-5674 (2010)
[27] Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L., Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 79, 926-935 (1983)
[28] Izvekov, S.; Parrinello, M.; Burnham, C. J.; Voth, G. A., Effective force field for condensed phase systems: a new method for force-matching, J. Chem. Phys., 120, 10896-10913 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.