×

Multiscale hybrid modeling of proteins in solvent: SARS-CoV2 spike protein as test case for lattice Boltzmann – all atom molecular dynamics coupling. (English) Zbl 1508.92084

Summary: Physiological solvent flows surround biological structures triggering therein collective motions. Notable examples are virus/host-cell interactions and solvent-mediated allosteric regulation. The present work describes a multiscale approach joining the Lattice Boltzmann fluid dynamics (for solvent flows) with the all-atom atomistic molecular dynamics (for proteins) to model functional interactions between flows and molecules. We present, as an applicative scenario, the study of the SARS-CoV-2 virus spike glycoprotein protein interacting with the surrounding solvent, modeled as a mesoscopic fluid. The equilibrium properties of the wild-type spike and of the Alpha variant in implicit solvent are described by suitable observables. The mesoscopic solvent description is critically compared to the all-atom solvent model, to quantify the advantages and limitations of the mesoscopic fluid description.

MSC:

92C40 Biochemistry, molecular biology
35Q20 Boltzmann equations
82M37 Computational molecular dynamics in statistical mechanics
92C05 Biophysics
92C35 Physiological flow

References:

[1] J.-D. Rochaix, Dynamic modeling of a 100-million-atom organelle at the source of life, Cell, vol. 179, no. 5, pp. 1012-1014, 2019.
[2] X. Song, M. Ø. Jensen, V. Jogini, R. A. Stein, C.-H. Lee, H. S. Mchaourab, D. E. Shaw, and E. Gouaux, Mechanism of NMDA receptor channel block by MK-801 and memantine, Na-ture, vol. 556, no. 7702, pp. 515-519, 2018.
[3] D. Gadioli, E. Vitali, F. Ficarelli, C. Latini, C. Manelfi, C. Talarico, C. Silvano, C. Cavaz-zoni, G. Palermo, and A. R. Beccari, Exscalate: An extreme-scale in-silico virtual screening platform to evaluate 1 trillion compounds in 60 hours on 81 PFlops supercomputers, arXiv preprint arXiv:2110.11644, 2021.
[4] E. Taka, S. Z. Yilmaz, M. Golcuk, C. Kilinc, U. Aktas, A. Yildiz, and M. Gur, Critical in-teractions between the SARS-CoV-2 spike glycoprotein and the human ACE2 receptor, The Journal of Physical Chemistry B, 2021.
[5] J. He, H. Tao, Y. Yan, S.-Y. Huang, and Y. Xiao, Molecular mechanism of evolution and hu-man infection with SARS-CoV-2, Viruses, vol. 12, no. 4, p. 428, 2020.
[6] V. Armijos-Jaramillo, J. Yeager, C. Muslin, and Y. Perez-Castillo, SARS-CoV-2, an evolution-ary perspective of interaction with human ACE2 reveals undiscovered amino acids neces-sary for complex stability, Evolutionary Applications, vol. 13, no. 9, pp. 2168-2178, 2020.
[7] J. Zou, J. Yin, L. Fang, M. Yang, T. Wang, W. Wu, M. A. Bellucci, and P. Zhang, Computational prediction of mutational effects on SARS-CoV-2 binding by relative free energy calculations, Journal of Chemical Information and Modeling, vol. 60, no. 12, pp. 5794-5802, 2020.
[8] E. S. Brielle, D. Schneidman-Duhovny, and M. Linial, The SARS-CoV-2 exerts a distinctive strategy for interacting with the ACE2 human receptor, Viruses, vol. 12, no. 5, p. 497, 2020.
[9] K. Gao, R. Wang, J. Chen, L. Cheng, J. Frishcosy, Y. Huzumi, Y. Qiu, T. Schluckbier, and G.-W. Wei, Methodology-centered review of molecular modeling, simulation, and prediction of SARS-CoV-2, arXiv preprint arXiv:2102.00971, 2021.
[10] E. N. Muratov, R. Amaro, C. H. Andrade, N. Brown, S. Ekins, D. Fourches, O. Isayev, D. Kozakov, J. L. Medina-Franco, K. M. Merz, et al., A critical overview of computational approaches employed for COVID-19 drug discovery, Chemical Society Reviews, 2021.
[11] A. Ali and R. Vijayan, Dynamics of the ACE2-SARS-CoV-2/SARS-CoV spike protein inter-face reveal unique mechanisms, Scientific Reports, vol. 10, no. 1, pp. 1-12, 2020.
[12] W. Zheng, H. Wen, G. J. Iacobucci, and G. K. Popescu, Probing the structural dynamics of the NMDA receptor activation by coarse-grained modeling, Biophysical Journal, vol. 112, no. 12, pp. 2589-2601, 2017.
[13] L. Casalino, A. C. Dommer, Z. Gaieb, E. P. Barros, T. Sztain, S.-H. Ahn, A. Trifan, A. Brace, A. T. Bogetti, A. Clyde, et al., AI-driven multiscale simulations illuminate mechanisms of SARS-CoV-2 spike dynamics, The International Journal of High Performance Computing Appli-cations, p. 10943420211006452, 2021.
[14] B. Lev, S. Murail, F. Poitevin, B. A. Cromer, M. Baaden, M. Delarue, and T. W. Allen, String method solution of the gating pathways for a pentameric ligand-gated ion channel, Proceed-ings of the National Academy of Sciences, vol. 114, no. 21, pp. E4158-E4167, 2017.
[15] C. Abrams and G. Bussi, Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration, Entropy, vol. 16, no. 1, pp. 163-199, 2014.
[16] A. Yu, A. J. Pak, P. He, V. Monje-Galvan, L. Casalino, Z. Gaieb, A. C. Dommer, R. E. Amaro, and G. A. Voth, A multiscale coarse-grained model of the SARS-CoV-2 virion, Biophysical Journal, vol. 120, no. 6, pp. 1097-1104, 2021.
[17] T. Leong, C. Voleti, and Z. Peng, Coarse-grained modeling of coronavirus spike proteins and ACE2 receptors, Frontiers in Physics, vol. 9, 2021.
[18] L. Monticelli, S. K. Kandasamy, X. Periole, R. G. Larson, D. P. Tieleman, and S.-J. Marrink, The martini coarse-grained force field: Extension to proteins, Journal of Chemical Theory and Computation, vol. 4, no. 5, pp. 819-834, 2008.
[19] S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. De Vries, The martini force field: Coarse grained model for biomolecular simulations, The Journal of Physical Chemistry B, vol. 111, no. 27, pp. 7812-7824, 2007.
[20] F. Sterpone, P. Derreumaux, and S. Melchionna, Protein simulations in fluids: Coupling the opep coarse-grained force field with hydrodynamics, Journal of Chemical Theory and Compu-tation, vol. 11, no. 4, pp. 1843-1853, 2015.
[21] F. Sterpone, S. Melchionna, P. Tuffery, S. Pasquali, N. Mousseau, T. Cragnolini, Y. Chebaro, J.-F. St-Pierre, M. Kalimeri, A. Barducci, et al., The OPEP protein model: From single molecules, amyloid formation, crowding and hydrodynamics to DNA/RNA systems, Chemical Society Reviews, vol. 43, no. 13, pp. 4871-4893, 2014.
[22] P. V. Coveney, A. Hoekstra, B. Rodriguez, and M. Viceconti, Computational biomedicine. Part II: Organs and systems, Interface Focus, vol. 11, no. 1, p. 20200082, 2021.
[23] W. Edeling, H. Arabnejad, R. Sinclair, D. Suleimenova, K. Gopalakrishnan, B. Bosak, D. Groen, I. Mahmood, D. Crommelin, and P. V. Coveney, The impact of uncertainty on pre-dictions of the CovidSim epidemiological code, Nature Computational Science, vol. 1, no. 2, pp. 128-135, 2021.
[24] F. Di Palma, S. Succi, F. Sterpone, M. Lauricella, F. Pérot, and S. Melchionna, Three-stage multiscale modelling of the NMDA neuroreceptor, Molecular Physics, vol. 119, no. 19-20, p. e1928312, 2021.
[25] M. Bernaschi, S. Melchionna, and S. Succi, Mesoscopic simulations at the physics-chemistry-biology interface, Reviews of Modern Physics, vol. 91, no. 2, p. 025004, 2019.
[26] F. Mackay and C. Denniston, Coupling MD particles to a lattice-Boltzmann fluid through the use of conservative forces, Journal of Computational Physics, vol. 237, pp. 289-298, 2013. · Zbl 1286.76119
[27] A. Dupuis, E. Kotsalis, and P. Koumoutsakos, Coupling lattice Boltzmann and molecular dynamics models for dense fluids, Physical Review E, vol. 75, no. 4, p. 046704, 2007.
[28] M. G. Fyta, S. Melchionna, E. Kaxiras, and S. Succi, Multiscale coupling of molecular dynam-ics and hydrodynamics: Application to DNA translocation through a nanopore, Multiscale Modeling & Simulation, vol. 5, no. 4, pp. 1156-1173, 2006. · Zbl 1132.68810
[29] A. Chatterji and J. Horbach, Combining molecular dynamics with lattice Boltzmann: A hy-brid method for the simulation of (charged) colloidal systems, The Journal of Chemical Physics, vol. 122, no. 18, p. 184903, 2005.
[30] Y. Cai, J. Zhang, T. Xiao, H. Peng, S. M. Sterling, R. M. Walsh, S. Rawson, S. Rits-Volloch, and B. Chen, Distinct conformational states of SARS-CoV-2 spike protein, Science, vol. 369, no. 6511, pp. 1586-1592, 2020.
[31] B. J. Bosch, R. Van der Zee, C. A. De Haan, and P. J. Rottier, The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex, Journal of Virology, vol. 77, no. 16, pp. 8801-8811, 2003.
[32] A. Spinello, A. Saltalamacchia, and A. Magistrato, Is the rigidity of SARS-CoV-2 spike receptor-binding motif the hallmark for its enhanced infectivity? Insights from all-atom simulations, The Journal of Physical Chemistry Letters, vol. 11, no. 12, pp. 4785-4790, 2020.
[33] M.-C. Bellissent-Funel, A. Hassanali, M. Havenith, R. Henchman, P. Pohl, F. Sterpone, D. Van Der Spoel, Y. Xu, and A. E. Garcia, Water determines the structure and dynamics of proteins, Chemical Reviews, vol. 116, no. 13, pp. 7673-7697, 2016.
[34] D. Wrapp, N. Wang, K. S. Corbett, J. A. Goldsmith, C.-L. Hsieh, O. Abiona, B. S. Graham, and J. S. McLellan, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science, vol. 367, no. 6483, pp. 1260-1263, 2020.
[35] R. Yan, Y. Zhang, Y. Li, L. Xia, Y. Guo, and Q. Zhou, Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2, Science, vol. 367, no. 6485, pp. 1444-1448, 2020.
[36] J. Yang, R. Yan, A. Roy, D. Xu, J. Poisson, and Y. Zhang, The I-Tasser suite: Protein structure and function prediction, Nature Methods, vol. 12, no. 1, pp. 7-8, 2015.
[37] B. Meng, S. A. Kemp, G. Papa, R. Datir, I. A. Ferreira, S. Marelli, W. T. Harvey, S. Lytras, A. Mohamed, G. Gallo, et al., Recurrent emergence of SARS-CoV-2 spike deletion h69/v70 and its role in the alpha variant B. 1.1. 7, Cell Reports, vol. 35, no. 13, p. 109292, 2021.
[38] G. Martínez-Rosell, T. Giorgino, and G. De Fabritiis, Playmolecule proteinprepare: A web application for protein preparation for molecular dynamics simulations, Journal of Chemical Information and Modeling, vol. 57, no. 7, pp. 1511-1516, 2017.
[39] M. H. M. Olsson, C. R. Søndergaard, M. Rostkowski, and J. H. Jensen, PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions, Journal of Chemical Information and Modeling, vol. 7, no. 2, pp. 525-537, 2011.
[40] T. J. Dolinsky, J. E. Nielsen, J. A. McCammon, and N. A. Baker, PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations, Nucleic Acids Re-search, vol. 32, no. suppl 2, pp. W665-W667, 2004.
[41] W. Humphrey, A. Dalke, and K. Schulten, VMD: visual molecular dynamics, Journal of Molec-ular Graphics, vol. 14, no. 1, pp. 33-38, 1996.
[42] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of Compu-tational Physics, vol. 117, no. 1, pp. 1-19, 1995. · Zbl 0830.65120
[43] U. Micka, C. Holm, and K. Kremer, Strongly charged, flexible polyelectrolytes in poor sol-vents: Molecular dynamics simulations, Langmuir, vol. 15, no. 12, pp. 4033-4044, 1999.
[44] J. Huang and A. D. MacKerell Jr, CHARMM36m all-atom additive protein force field: Vali-dation based on comparison to NMR data, Journal of Computational Chemistry, vol. 34, no. 25, pp. 2135-2145, 2013.
[45] S. Succi and S. Succi, The Lattice Boltzmann Equation: For Complex States of Flowing Matter. Oxford University Press, 2018. · Zbl 1485.76003
[46] R. Adhikari, K. Stratford, M. Cates, and A. Wagner, Fluctuating lattice Boltzmann, EPL (Eu-rophysics Letters), vol. 71, no. 3, p. 473, 2005.
[47] F. Mackay, S. T. Ollila, and C. Denniston, Hydrodynamic forces implemented into lammps through a lattice-Boltzmann fluid, Computer Physics Communications, vol. 184, no. 8, pp. 2021-2031, 2013. · Zbl 1344.76005
[48] S. T. Ollila, C. Denniston, M. Karttunen, and T. Ala-Nissila, Fluctuating lattice-Boltzmann model for complex fluids, The Journal of Chemical Physics, vol. 134, no. 6, p. 064902, 2011.
[49] B. Dünweg and A. J. Ladd, Lattice Boltzmann simulations of soft matter systems, Advanced Computer Simulation Approaches for Soft Matter Sciences III, pp. 89-166, 2009.
[50] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lindahl, Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, vol. 1, pp. 19-25, 2015.
[51] P. J. Steinbach and B. R. Brooks, New spherical-cutoff methods for long-range forces in macromolecular simulation, Journal of Computational Chemistry, vol. 15, no. 7, pp. 667-683, 1994.
[52] A. D. MacKerell Jr, D. Bashford, M. Bellott, R. L. Dunbrack Jr, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, et al., All-atom empirical potential for molecular model-ing and dynamics studies of proteins, The Journal of Physical Chemistry B, vol. 102, no. 18, pp. 3586-3616, 1998.
[53] M. Ghorbani, B. R. Brooks, and J. B. Klauda, Exploring dynamics and network analysis of spike glycoprotein of SARS-CoV-2, Biophysical Journal, vol. 120, no. 14, pp. 2902-2913, 2021.
[54] A. Khan, D.-Q. Wei, K. Kousar, J. Abubaker, S. Ahmad, J. Ali, F. Al-Mulla, S. S. Ali, N. Nizam-Uddin, A. Mohammad Sayaf, et al., Preliminary structural data revealed that the SARS-CoV-2 B. 1.617 variant’s RBD binds to ACE2 receptor stronger than the wild type to enhance the infectivity, ChemBioChem, vol. 22, no. 16, pp. 2641-2649, 2021.
[55] P. V. Raghuvamsi, N. K. Tulsian, F. Samsudin, X. Qian, K. Purushotorman, G. Yue, M. M. Kozma, W. Y. Hwa, J. Lescar, P. J. Bond, et al., SARS-CoV-2 S protein: ACE2 interaction reveals novel allosteric targets, Elife, vol. 10, p. e63646, 2021.
[56] D. Frishman and P. Argos, Knowledge-based protein secondary structure assignment, Pro-teins: Structure, Function, and Bioinformatics, vol. 23, no. 4, pp. 566-579, 1995.
[57] R. Zhou, Free energy landscape of protein folding in water: Explicit vs. implicit solvent, Proteins: Structure, Function, and Bioinformatics, vol. 53, no. 2, pp. 148-161, 2003.
[58] N. Calimet, M. Schaefer, and T. Simonson, Protein molecular dynamics with the general-ized Born/ACE solvent model, Proteins: Structure, Function, and Bioinformatics, vol. 45, no. 2, pp. 144-158, 2001.
[59] G. M. Verkhivker, Molecular simulations and network modeling reveal an allosteric signal-ing in the SARS-CoV-2 spike proteins, Journal of Proteome Research, vol. 19, no. 11, pp. 4587-4608, 2020.
[60] A. Singh, G. Steinkellner, K. Köchl, K. Gruber, and C. C. Gruber, Serine 477 plays a crucial role in the interaction of the SARS-CoV-2 spike protein with the human receptor ACE2, Scientific Reports, vol. 11, no. 1, pp. 1-11, 2021.
[61] V. A. Ngo and R. K. Jha, Identifying key determinants and dynamics of SARS-CoV-2/ACE2 tight interaction, PloS One, vol. 16, no. 9, p. e0257905, 2021.
[62] Y. Chen, A. Krämer, N. E. Charron, B. E. Husic, C. Clementi, and F. Noé, Machine learning implicit solvation for molecular dynamics, The Journal of Chemical Physics, vol. 155, no. 8, p. 084101, 2021.
[63] M. Kulke, N. Geist, D.Moller, and W. Langel, Replica-based protein structure sampling methods: compromising between explicit and implicit solvents, The Journal of Physical Chem-istry B, vol. 122, no. 29, pp. 7295-7307, 2018.
[64] Q. Shao and W. Zhu, Assessing amber force fields for protein folding in an implicit solvent, Physical Chemistry Chemical Physics, vol. 20, no. 10, pp. 7206-7216, 2018.
[65] A. Suenaga, Replica-exchange molecular dynamics simulations for a small-sized protein folding with implicit solvent, Journal of Molecular Structure: THEOCHEM, vol. 634, no. 1-3, pp. 235-241, 2003.
[66] A. V. Onufriev and S. Izadi, Water models for biomolecular simulations, Wiley Interdisci-plinary Reviews: Computational Molecular Science, vol. 8, no. 2, p. e1347, 2018.
[67] D. R. Roe, A. Okur, L. Wickstrom, V. Hornak, and C. Simmerling, Secondary structure bias in generalized Born solvent models: Comparison of conformational ensembles and free energy of solvent polarization from explicit and implicit solvation, The Journal of Physical Chemistry B, vol. 111, no. 7, pp. 1846-1857, 2007.
[68] A. Okur, L. Wickstrom, M. Layten, R. Geney, K. Song, V. Hornak, and C. Simmerling, Im-proved efficiency of replica exchange simulations through use of a hybrid explicit/implicit solvation model, Journal of Chemical Theory and Computation, vol. 2, no. 2, pp. 420-433, 2006.
[69] Y. Deng and B. Roux, Hydration of amino acid side chains: Nonpolar and electrostatic con-tributions calculated from staged molecular dynamics free energy simulations with explicit water molecules, The Journal of Physical Chemistry B, vol. 108, no. 42, pp. 16567-16576, 2004.
[70] V. G. Kumar, D. S. Ogden, U. H. Isu, A. Polasa, J. Losey, and M. Moradi, Differential dynamic behavior of prefusion spike proteins of SARS coronaviruses 1 and 2, BioRxiv, pp. 2020-12, 2021.
[71] S. Piplani, P. K. Singh, D. A. Winkler, and N. Petrovsky, In silico comparison of SARS-CoV-2 spike protein-ACE2 binding affinities across species and implications for virus origin, Scien-tific Reports, vol. 11, no. 1, pp. 1-13, 2021.
[72] P. Tao and Y. Xiao, Using the generalized born surface area model to fold proteins yields more effective sampling while qualitatively preserving the folding landscape, Physical Re-view E, vol. 101, no. 6, p. 062417, 2020.
[73] A. Gao, R. C. Remsing, and J. D. Weeks, Short solvent model for ion correlations and hy-drophobic association, Proceedings of the National Academy of Sciences, vol. 117, no. 3, pp. 1293-1302, 2020.
[74] A. Chakravorty, Z. Jia, L. Li, S. Zhao, and E. Alexov, Reproducing the ensemble average polar solvation energy of a protein from a single structure: Gaussian-based smooth dielectric function for macromolecular modeling, Journal of Chemical Theory and Computation, vol. 14, no. 2, pp. 1020-1032, 2018.
[75] K. Stokely, M. G. Mazza, H. E. Stanley, and G. Franzese, Effect of hydrogen bond coopera-tivity on the behavior of water, Proceedings of the National Academy of Sciences, vol. 107, no. 4, pp. 1301-1306, 2010.
[76] G. Franzese and H. E. Stanley, Liquid-liquid critical point in a Hamiltonian model for water: Analytic solution, Journal of Physics: Condensed Matter, vol. 14, no. 9, p. 2201, 2002.
[77] A. Ben-Naim, One-dimensional model for water and aqueous solutions. I. Pure liquid water, The Journal of Chemical Physics, vol. 128, no. 2, p. 024505, 2008.
[78] R. A. Lovett and A. Ben-Naim, One-dimensional model for aqueous solutions of inert gases, The Journal of Chemical Physics, vol. 51, no. 7, pp. 3108-3119, 1969.
[79] V. Bianco, N. Pagès-Gelabert, I. Coluzza, and G. Franzese, How the stability of a folded protein depends on interfacial water properties and residue-residue interactions, Journal of Molecular Liquids, vol. 245, pp. 129-139, 2017.
[80] V. Bianco, G. Franzese, C. Dellago, and I. Coluzza, Role of water in the selection of stable proteins at ambient and extreme thermodynamic conditions, Physical Review X, vol. 7, no. 2, p. 021047, 2017.
[81] A. Ben-Naim, Statistical mechanics of “waterlike” particles in two dimensions. I. Physical model and application of the Percus-Yevick equation, The Journal of Chemical Physics, vol. 54, no. 9, pp. 3682-3695, 1971.
[82] S. Succi, N. Moradi, A. Greiner, and S. Melchionna, Lattice Boltzmann modeling of water-like fluids, Frontiers in Physics, vol. 2, p. 22, 2014.
[83] F. L. Barroso da Silva, F. Sterpone, and P. Derreumaux, OPEP6: A new constant-pH molec-ular dynamics simulation scheme with opep coarse-grained force field, Journal of Chemical Theory and Computation, vol. 15, no. 6, pp. 3875-3888, 2019.
[84] C. Arnarez, J. J. Uusitalo, M. F. Masman, H. I. Ingólfsson, D. H. De Jong, M. N. Melo, X. Peri-ole, A. H. De Vries, and S. J. Marrink, Dry martini, a coarse-grained force field for lipid mem-brane simulations with implicit solvent, Journal of Chemical Theory and Computation, vol. 11, no. 1, pp. 260-275, 2015.
[85] F. Sterpone, P. Derreumaux, and S. Melchionna, Molecular mechanism of protein unfolding under shear: A lattice Boltzmann molecular dynamics study, The Journal of Physical Chemistry B, vol. 122, no. 5, pp. 1573-1579, 2018.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.