×

Computing committors in collective variables via Mahalanobis diffusion maps. (English) Zbl 1528.65007

Summary: The study of rare events in molecular and atomic systems such as conformal changes and cluster rearrangements has been one of the most important research themes in chemical physics. Key challenges are associated with long waiting times rendering molecular simulations inefficient, high dimensionality impeding the use of PDE-based approaches, and the complexity or breadth of transition processes limiting the predictive power of asymptotic methods. Diffusion maps are promising algorithms to avoid or mitigate all these issues. We adapt the diffusion map with Mahalanobis kernel proposed by A. Singer and R. R. Coifman [Appl. Comput. Harmon. Anal. 25, No. 2, 226–239 (2008; Zbl 1144.62044)] for the SDE describing molecular dynamics in collective variables in which the diffusion matrix is position-dependent and, unlike the case considered by Singer and Coifman, is not associated with a diffeomorphism. We offer an elementary proof showing that one can approximate the generator for this SDE discretized to a point cloud via the Mahalanobis diffusion map. We use it to calculate the committor functions in collective variables for two benchmark systems: alanine dipeptide, and Lennard-Jones-7 in 2D. For validating our committor results, we compare our committor functions to the finite-difference solution or by conducting a “committor analysis” as used by molecular dynamics practitioners. We contrast the outputs of the Mahalanobis diffusion map with those of the standard diffusion map with isotropic kernel and show that the former gives significantly more accurate estimates for the committors than the latter.

MSC:

65C99 Probabilistic methods, stochastic differential equations
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)

Citations:

Zbl 1144.62044

Software:

AMINO; Gromacs

References:

[1] E, W.; Vanden-Eijnden, E., Metastability, conformation dynamics, and transition pathways in complex systems, (Multiscale Modelling and Simulation (2004), Springer), 35-68 · Zbl 1141.82312
[2] E, W.; Vanden-Eijnden, E., Towards a theory of transition paths, J. Stat. Phys., 123, 3, 503 (2006) · Zbl 1101.82016
[3] E, W.; Vanden-Eijnden, E., Transition-path theory and path-finding algorithms for the study of rare events, Annu. Rev. Phys. Chem., 61, 391-420 (2010)
[4] Cameron, M., Estimation of reactive fluxes in gradient stochastic systems using an analogy with electric circuits, J. Comput. Phys., 247, 137-152 (2013) · Zbl 1349.60131
[5] Maragliano, L.; Fischer, A.; Vanden-Eijnden, E.; Ciccotti, G., String method in collective variables: minimum free energy paths and isocommittor surfaces, J. Chem. Phys., 125, 2, Article 024106 pp. (2006)
[6] Ravindra, P.; Smith, Z.; Tiwary, P., Automatic mutual information noise omission (AMINO): generating order parameters for molecular systems, Mol. Syst. Des. Eng., 5, 1, 339-348 (2020)
[7] Rohrdanz, M. A.; Zheng, W.; Maggioni, M.; Clementi, C., Determination of reaction coordinates via locally scaled diffusion map, J. Chem. Phys., 134, 12, Article 03B624 pp. (2011)
[8] Piana, S.; Laio, A., Advillin folding takes place on a hypersurface of small dimensionality, Phys. Rev. Lett., 101, 20, Article 208101 pp. (2008)
[9] Sittel, F.; Stock, G., Perspective: identification of collective variables and metastable states of protein dynamics, J. Chem. Phys., 149, 15, Article 150901 pp. (2018)
[10] Khoo, Y.; Lu, J.; Ying, L., Solving for high-dimensional committor functions using artificial neural networks, Res. Math. Sci., 6, 1, 1 (2019) · Zbl 1498.60222
[11] Li, Q.; Lin, B.; Ren, W., Computing committor functions for the study of rare events using deep learning, J. Chem. Phys., 151, 5, Article 054112 pp. (2019)
[12] Rotskoff, G. M.; Vanden-Eijnden, E., Learning with rare data: using active importance sampling to optimize objectives dominated by rare events (2020), arXiv preprint
[13] Trstanova, Z.; Leimkuhler, B.; Lelièvre, T., Local and global perspectives on diffusion maps in the analysis of molecular systems, Proc. R. Soc. A, 476, 2233, Article 20190036 pp. (2020) · Zbl 1472.82029
[14] Lai, R.; Lu, J., Point cloud discretization of Fokker-Planck operators for committor functions, Multiscale Model. Simul., 16, 2, 710-726 (2018) · Zbl 1431.65235
[15] Coifman, R. R.; Lafon, S., Diffusion maps, Appl. Comput. Harmon. Anal., 21, 1, 5-30 (2006) · Zbl 1095.68094
[16] Roweis, S. T.; Saul, L. K., Nonlinear dimensionality reduction by locally linear embedding, Science, 290, 5500, 2323-2326 (2000)
[17] Tenenbaum, J. B.; De Silva, V.; Langford, J. C., A global geometric framework for nonlinear dimensionality reduction, Science, 290, 5500, 2319-2323 (2000)
[18] Belkin, M.; Niyogi, P., Laplacian eigenmaps for dimensionality reduction and data representation, Neural Comput., 15, 6, 1373-1396 (2003) · Zbl 1085.68119
[19] Ferguson, A. L.; Panagiotopoulos, A. Z.; Debenedetti, P. G.; Kevrekidis, I. G., Systematic determination of order parameters for chain dynamics using diffusion maps, Proc. Natl. Acad. Sci., 107, 31, 13597-13602 (2010)
[20] Ferguson, A. L.; Panagiotopoulos, A. Z.; Kevrekidis, I. G.; Debenedetti, P. G., Nonlinear dimensionality reduction in molecular simulation: the diffusion map approach, Chem. Phys. Lett., 509, 1-3, 1-11 (2011)
[21] Zheng, W.; Rohrdanz, M. A.; Maggioni, M.; Clementi, C., Polymer reversal rate calculated via locally scaled diffusion map, J. Chem. Phys., 134, 14, Article 144109 pp. (2011)
[22] Coifman, R. R.; Kevrekidis, I. G.; Lafon, S.; Maggioni, M.; Nadler, B., Diffusion maps, reduction coordinates, and low dimensional representation of stochastic systems, Multiscale Model. Simul., 7, 2, 842-864 (2008) · Zbl 1175.60058
[23] Berezhkovskii, A. M.; Szabo, A.; Greives, N.; Zhou, H.-X., Multidimensional reaction rate theory with anisotropic diffusion, J. Chem. Phys., 141, 20, Article 11B616_1 pp. (2014)
[24] Singer, A.; Coifman, R. R., Non-linear independent component analysis with diffusion maps, Appl. Comput. Harmon. Anal., 25, 2, 226-239 (2008) · Zbl 1144.62044
[25] Risken, H., Fokker-Planck equation, (The Fokker-Planck Equation (1996), Springer), 63-95
[26] Chen, W.; Tan, A. R.; Ferguson, A. L., Collective variable discovery and enhanced sampling using autoencoders: innovations in network architecture and error function design, J. Chem. Phys., 149, 7, Article 072312 pp. (2018)
[27] Stamati, H.; Clementi, C.; Kavraki, L. E., Application of nonlinear dimensionality reduction to characterize the conformational landscape of small peptides, Proteins, 78, 2, 223-235 (2010)
[28] Wang, D.; Tiwary, P., State predictive information bottleneck, J. Chem. Phys., 154, 13, Article 134111 pp. (2021)
[29] Dellago, C.; Bolhuis, P. G.; Chandler, D., Efficient transition path sampling: application to Lennard-Jones cluster rearrangements, J. Chem. Phys., 108, 22, 9236-9245 (1998)
[30] Wales, D. J., Discrete path sampling, Mol. Phys., 100, 20, 3285-3305 (2002)
[31] Passerone, D.; Parrinello, M., Action-derived molecular dynamics in the study of rare events, Phys. Rev. Lett., 87, 10, Article 108302 pp. (2001)
[32] Peters, B., Reaction coordinates and mechanistic hypothesis tests, Annu. Rev. Phys. Chem., 67, 669-690 (2016)
[33] Geissler, P. L.; Dellago, C.; Chandler, D., Kinetic pathways of ion pair dissociation in water, J. Phys. Chem. B, 103, 18, 3706-3710 (1999)
[34] Pavliotis, G. A., Stochastic Processes and ApplicationsDiffusion Processes, the Fokker-Planck and Langevin Equations, vol. 60 (2014), Springer · Zbl 1318.60003
[35] Metzner, P.; Schütte, C.; Vanden-Eijnden, E., Transition path theory for Markov jump processes, Multiscale Model. Simul., 7, 3, 1192-1219 (2009) · Zbl 1185.60086
[36] Cameron, M.; Vanden-Eijnden, E., Flows in complex networks: theory, algorithms, and application to Lennard-Jones cluster rearrangement, J. Stat. Phys., 156, 3, 427-454 (2014) · Zbl 1301.82031
[37] Berry, T.; Harlim, J., Variable bandwidth diffusion kernels, Appl. Comput. Harmon. Anal., 40, 1, 68-96 (2016) · Zbl 1343.94020
[38] Banisch, R.; Trstanova, Z.; Bittracher, A.; Klus, S.; Koltai, P., Diffusion maps tailored to arbitrary non-degenerate Itô processes, Appl. Comput. Harmon. Anal., 48, 1, 242-265 (2020) · Zbl 1456.60198
[39] Berry, T.; Sauer, T., Local kernels and the geometric structure of data, Appl. Comput. Harmon. Anal., 40, 3, 439-469 (2016) · Zbl 1376.94002
[40] Dsilva, C. J.; Talmon, R.; Gear, C. W.; Coifman, R. R.; Kevrekidis, I. G., Data-driven reduction for a class of multiscale fast-slow stochastic dynamical systems, SIAM J. Appl. Dyn. Syst., 15, 3, 1327-1351 (2016) · Zbl 1353.37151
[41] Talmon, R.; Coifman, R. R., Empirical intrinsic geometry for nonlinear modeling and time series filtering, Proc. Natl. Acad. Sci., 110, 31, 12535-12540 (2013)
[42] Moosmüller, C.; Dietrich, F.; Kevrekidis, I. G., A geometric approach to the transport of discontinuous densities, SIAM/ASA J. Uncertain. Quantificat., 8, 3, 1012-1035 (2020) · Zbl 1448.37109
[43] Dietrich, F.; Kooshkbaghi, M.; Bollt, E. M.; Kevrekidis, I. G., Manifold learning for organizing unstructured sets of process observations, Chaos, 30, 4, Article 043108 pp. (2020) · Zbl 1447.37075
[44] Singer, A.; Erban, R.; Kevrekidis, I. G.; Coifman, R. R., Detecting intrinsic slow variables in stochastic dynamical systems by anisotropic diffusion maps, Proc. Natl. Acad. Sci., 106, 38, 16090-16095 (2009)
[45] Schwartz, A.; Talmon, R., Intrinsic isometric manifold learning with application to localization, SIAM J. Imaging Sci., 12, 3, 1347-1391 (2019)
[46] Dsilva, C. J.; Talmon, R.; Rabin, N.; Coifman, R. R.; Kevrekidis, I. G., Nonlinear intrinsic variables and state reconstruction in multiscale simulations, J. Chem. Phys., 139, 18, Article 11B608_1 pp. (2013)
[47] Peterfreund, E.; Lindenbaum, O.; Dietrich, F.; Bertalan, T.; Gavish, M.; Kevrekidis, I. G.; Coifman, R. R., Local conformal autoencoder for standardized data coordinates, Proc. Natl. Acad. Sci., 117, 49, 30918-30927 (2020)
[48] Gilani, F.; Harlim, J., Approximating solutions of linear elliptic PDE’s on a smooth manifold using local kernel, J. Comput. Phys., 395, 563-582 (2019) · Zbl 1452.65312
[49] Moro, G. J.; Cardin, F., Saddlepoint avoidance due to inhomogeneous friction, Chem. Phys., 235, 1-3, 189-200 (1998)
[50] Johnson, M. E.; Hummer, G., Characterization of a dynamic string method for the construction of transition pathways in molecular reactions, J. Phys. Chem. B, 116, 29, 8573-8583 (2012)
[51] Nikulin, V. V.; Shafarevich, I. R., Geometries and Groups (1987), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest · Zbl 0621.51001
[52] Tribello, G. A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G., Plumed 2: new feathers for an old bird, Comput. Phys. Commun., 185, 2, 604-613 (2014)
[53] Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J., Gromacs: fast, flexible, and free, J. Comput. Chem., 26, 16, 1701-1718 (2005)
[54] Tribello, G. A.; Ceriotti, M.; Parrinello, M., A self-learning algorithm for biased molecular dynamics, Proc. Natl. Acad. Sci., 107, 41, 17509-17514 (2010)
[55] Tsai, S.-T.; Smith, Z.; Tiwary, P., Reaction coordinates and rate constants for liquid droplet nucleation: quantifying the interplay between driving force and memory, J. Chem. Phys., 151, 15, Article 154106 pp. (2019)
[56] Martini, L.; Kells, A.; Covino, R.; Hummer, G.; Buchete, N.-V.; Rosta, E., Variational identification of Markovian transition states, Phys. Rev. X, 7, 3, Article 031060 pp. (2017)
[57] Maragliano, L.; Vanden-Eijnden, E., A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations, Chem. Phys. Lett., 426, 1-3, 168-175 (2006)
[58] Valsson, O.; Tiwary, P.; Parrinello, M., Enhancing important fluctuations: rare events and metadynamics from a conceptual viewpoint, Annu. Rev. Phys. Chem., 67, 159-184 (2016)
[59] Carter, E.; Ciccotti, G.; Hynes, J. T.; Kapral, R., Constrained reaction coordinate dynamics for the simulation of rare events, Chem. Phys. Lett., 156, 5, 472-477 (1989)
[60] Kirkwood, J. G., Statistical mechanics of fluid mixtures, J. Chem. Phys., 3, 5, 300-313 (1935) · Zbl 0012.04704
[61] Straub, J. E.; Borkovec, M.; Berne, B. J., Calculation of dynamic friction on intramolecular degrees of freedom, J. Phys. Chem., 91, 19, 4995-4998 (1987)
[62] Bakry, D.; Gentil, I.; Ledoux, M., Analysis and Geometry of Markov Diffusion Operators, vol. 348 (2013), Springer Science & Business Media
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.