×

Parallelization of a stochastic Euler-Lagrange model applied to large scale dense bubbly flows. (English) Zbl 07785537

Summary: A parallel and scalable stochastic Direct Simulation Monte Carlo (DSMC) method applied to large-scale dense bubbly flows is reported in this paper. The DSMC method is applied to speed up the bubble-bubble collision handling relative to the Discrete Bubble Model proposed by D. Darmana et al. [J. Comput. Phys. 220, No. 1, 216–248 (2006; Zbl 1158.76396)]. The DSMC algorithm has been modified and extended to account for bubble-bubble interactions arising due to uncorrelated and correlated bubble velocities. The algorithm is fully coupled with an in-house CFD code and parallelized using the MPI framework. The model is verified and validated on multiple cores with different test cases, ranging from impinging particle streams to laboratory-scale bubble columns. The parallel performance is shown using two different large scale systems: with an uniform and a non-uniform distribution of bubbles. The hydrodynamics of a pilot-scale bubble column is analyzed and the effect of the column scale is reported via the comparison of bubble columns at three different scales.

MSC:

76Mxx Basic methods in fluid mechanics
65Yxx Computer aspects of numerical algorithms
76Txx Multiphase and multicomponent flows

Citations:

Zbl 1158.76396

References:

[1] Darmana, D.; Deen, N. G.; Kuipers, J. A.M., Parallelization of an Euler-Lagrange model using mixed domain decomposition and a mirror domain technique: application to dispersed gas liquid two-phase flow. J. Comput. Phys., 1, 216-248 (2006) · Zbl 1158.76396
[2] Ouro, P.; Fraga, B.; Lopez-Novoa, U.; Stoesser, T., Scalability of an Eulerian-Lagrangian large-eddy simulation solver with hybrid MPI/OpenMP parallelisation. Comput. Fluids, 123-136 (2019) · Zbl 1411.76104
[3] Rakotonirina, A. D.; Wachs, A., Grains3D, a flexible DEM approach for particles of arbitrary convex shape - Part II: parallel implementation and scalable performance. Powder Technol., 18-35 (2018)
[4] Pozzetti, G.; Besseron, X.; Rousset, A.; Peters, B., A co-located partitions strategy for parallel CFD-DEM couplings. Adv. Powder Technol. (2018)
[5] Tian, Y.; Zhang, S.; Lin, P.; Yang, Q.; Yang, G.; Yang, L., Implementing discrete element method for large-scale simulation of particles on multiple GPUs. Comput. Chem. Eng., 231-240 (2017)
[6] Spandan, V.; Meschini, V.; Ostilla-Mónico, R.; Lohse, D.; Querzoli, G.; de Tullio, M. D.; Verzicco, R., A parallel interaction potential approach coupled with the immersed boundary method for fully resolved simulations of deformable interfaces and membranes. J. Comput. Phys., 567-590 (2017)
[7] Wang, S.; Luo, K.; Yang, S.; Hu, C.; Fan, J., Parallel LES-DEM simulation of dense flows in fluidized beds. Appl. Therm. Eng., 1523-1535 (2017)
[8] Geneva, N.; Peng, C.; Li, X.; Wang, L.-P., A scalable interface-resolved simulation of particle-laden flow using the lattice Boltzmann method. Parallel Comput., 20-37 (2017)
[9] Loisy, A., Direct Numerical Simulation of bubbly flows: coupling with scalar transport and turbulence (2017), Université de Lyon, Ph.D. thesis
[10] Liu, P.; Brown, T.; Fullmer, W. D.; Hauser, T.; Hrenya, C.; Grout, R.; Sitaraman, H., A Comprehensive Benchmark Suite for Simulation of Particle Laden Flows Using the Discrete Element Method with Performance Profiles from the Multiphase Flow with Interface eXchanges (MFiX) Code (2016), National Renewable Energy Laboratory, Tech. Rep. NREL/TP-2C00-65637
[11] Yue, X.; Zhang, H.; Ke, C.; Luo, C.; Shu, S.; Tan, Y.; Feng, C., A GPU-based discrete element modeling code and its application in die filling. Comput. Fluids, 235-244 (2015), parCFD 2013 · Zbl 1390.76016
[12] Mountrakis, L.; Lorenz, E.; Malaspinas, O.; Alowayyed, S.; Chopard, B.; Hoekstra, A. G., Parallel performance of an IB-LBM suspension simulation framework. J. Comput. Sci., 45-50 (2015), Computational Science at the Gates of Nature
[13] Jingsen, M.; Chao-Tsung, H.; Chahine, G. L., Shared-memory parallelization for two-way coupled Euler-Lagrange modeling of cavitating bubbly flows. J. Fluids Eng., 207-224 (2004)
[14] Goniva, C.; Blais, B.; Radl, S.; Kloss, C., Open source CFD-DEM modelling for particle-based processes, Conference date: 07-12-2015 through 09-12-2015
[15] Berger, R.; Kloss, C.; Kohlmeyer, A.; Pirker, S., Hybrid parallelization of the LIGGGHTS open-source DEM code. Powder Technol., 234-247 (2015)
[16] Wu, C.; Ayeni, O.; Berrouk, A.; Nandakumar, K., Parallel algorithms for CFD-DEM modeling of dense particulate flows. Chem. Eng. Sci., 221-244 (2014)
[17] Niethammer, C.; Becker, S.; Bernreuther, M.; Buchholz, M.; Eckhardt, W.; Heinecke, A.; Werth, S.; Bungartz, H.-J.; Glass, C. W.; Hasse, H.; Vrabec, J.; Horsch, M., ls1 mardyn: the massively parallel molecular dynamics code for large systems. J. Chem. Theory Comput., 10, 4455-4464 (2014), pMID: 26588142
[18] Liu, H.; Tafti, D. K.; Li, T., Hybrid parallelism in MFIX CFD-DEM using OpenMP. Powder Technol., 22-29 (2014)
[19] Amritkar, A.; Deb, S.; Tafti, D., Efficient parallel CFD-DEM simulations using OpenMP. J. Comput. Phys., 501-519 (2014) · Zbl 1349.76165
[20] ChihKuang, K.; Jaeheon, S.; Ezeldin, H.; Wei, S., Parallel Eulerian-Lagrangian method with adaptive mesh refinement for moving boundary computation. J. Fluids Eng., 207-224 (2004)
[21] Kafui, D.; Johnson, S.; Thornton, C.; Seville, J., Parallelization of a Lagrangian-Eulerian dem/cfd code for application to fluidized beds. Powder Technol., 1, 270-278 (2011)
[22] Maknickas, A.; Kaceniauskas, A.; Kacianauskas, R.; Balevicius, R.; Dziugys, A., Parallel dem software for simulation of granular media. Informatica, 207-224 (2006) · Zbl 1102.68711
[23] Pohl, T.; Deserno, F.; Thurey, N.; Rude, U.; Lammers, P.; Wellein, G.; Zeiser, T., Performance evaluation of parallel large-scale lattice Boltzmann applications on three supercomputing architectures, 21
[24] Pozzettia, G.; Jasakb, H.; Besserona, X.; Rousseta, A.; Petersa, B., A Parallel Dual-Grid Multiscale Approach to CFD-DEM Couplings (2018)
[25] Darmana, D., On the Multiscale Modelling of Hydrodynamics, Mass Transfer and Chemical Reactions in a Bubble Column (2006), PrintPartners Ipskamp: PrintPartners Ipskamp Enschede, the Netherlands
[26] Sungkorn, R.; Derksen, J. J.; Khinast, J. G., Modeling of turbulent gas-liquid bubbly flows using stochastic Lagrangian model and lattice-Boltzmann scheme. Chem. Eng. Sci., 12, 2745-2757 (2011)
[27] Sommerfeld, M., Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence. Int. J. Multiph. Flow, 10, 1829-1858 (2001) · Zbl 1137.76744
[28] Kamath, S.; Padding, J. T.; Buist, K. A.; Kuipers, J. A.M., Stochastic DSMC method for dense bubbly flows: methodology. Chem. Eng. Sci., 454-475 (2017)
[29] Tomiyama, A.; Matsuoka, T.; Fukuda, T.; Sakaguchi, T., A simple numerical method for solving an incompressible two-fluid model in a general curvilinear coordinate system. Multiph. Flow (1995)
[30] Tomiyama, A.; Tamai, H.; Zun, I.; Hosokawa, S., Transverse migration of single bubbles in simple shear flows. Chem. Eng. Sci., 11, 1849-1858 (2002)
[31] Roghair, I.; Lau, Y. M.; Deen, N. G.; Slagter, H. M.; Baltussen, M. W.; Van Sint Annaland, M.; Kuipers, J. A.M., On the drag force of bubbles in bubble swarms at intermediate and high Reynolds numbers. Chem. Eng. Sci., 14, 3204-3211 (2011)
[32] Bird, G. A., Molecular gas dynamics and direct simulation of gas flows (1994)
[33] Pawar, S. K.; Padding, J. T.; Deen, N. G.; Jongsma, A.; Innings, F.; Kuipers, J. A.M., Lagrangian modelling of dilute granular flow modified stochastic DSMC versus deterministic DPM. Chem. Eng. Sci., 132-142 (2014)
[34] Vreman, A. W., An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids, 10, 3670-3681 (2004) · Zbl 1187.76543
[35] Bird, G., Sophisticated DSMC, 1-49
[36] Pawar, S.; Padding, J.; Deen, N.; Jongsma, A.; Innings, F.; Kuipers, J. A.M., Numerical and experimental investigation of induced flow and droplet-droplet interactions in a liquid spray. Chem. Eng. Sci., 17-30 (2015)
[37] Darmana, D.; Henket, R. L.B.; Deen, N. G.; Kuipers, J. A.M., Detailed modelling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model: chemisorption of into NaOH solution, numerical and experimental study. Chem. Eng. Sci., 9, 2556-2575 (2007)
[38] Deen, N. G.; van Sint Annaland, M.; Kuipers, J. A.M., Multi scale modeling of dispersed gas liquid two-phase flow. Chem. Eng. Sci., 8-9, 1853-1861 (2004)
[39] Lau, Y. M.; Roghair, I.; Deen, N. G.; van Sint Annaland, M.; Kuipers, J. A.M., Numerical investigation of the drag closure for bubbles in bubble swarms. Chem. Eng. Sci., 14, 3309-3316 (2011)
[40] Sundaram, S.; Collins, L. R., Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech., 75-109 (1997) · Zbl 0901.76089
[41] Ma, D.; Ahmadi, G., An equation of state for dense rigid sphere gases. J. Chem. Phys., 6, 3449-3450 (1986)
[42] Santos, A.; Yuste, S. B.; de Haro, M. L., Equation of state of a multicomponent d-dimensional hard-sphere fluid. Mol. Phys., 1, 1-5 (1999)
[43] Patankar, S., Numerical Heat Transfer and Fluid Flow (1980), CRC Press · Zbl 0521.76003
[44] Centrells, J.; Wilson, J., Planar numerical cosmology. II. The difference equations and numerical tests. Astrophys. J. Suppl. Ser., 229-249 (1984)
[45] Sleijpen, G.; van der Vorst, H., Hybrid Bi-Conjugate gradient methods for CFD problems. Comput. Fluid Dyn. Rev., 4, 1-20 (1995)
[46] Gee, M.; Siefert, C.; Hu, J.; Tuminaro, R.; Sala, M., ML 5.0 Smoothed Aggregation User’s Guide (2006), Sandia National Laboratories, Tech. Rep. SAND2006-2649
[47] Heroux, M.; Bartlett, R.; Howle, V.; Hoekstra, R.; Hu, J.; Kolda, T.; Lehoucq, R.; Long, K.; Pawlowski, R.; Phipps, E.; Salinger, A.; Thornquist, H.; Tuminaro, R.; Willenbring, J.; Williams, A.; Stanley, K., An overview of the Trilinos project. ACM Trans. Math. Softw., 3, 397-423 (2005) · Zbl 1136.65354
[48] Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E., GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 19-25 (2015)
[49] Sbalzarini, I. F.; Walther, J. H.; Bergdorf, M.; Hieber, S. E.; Kotsalis, E. M.; Koumoutsakos, P., PPM-a highly efficient parallel particle-mesh library for the simulation of continuum systems. J. Comput. Phys., 2, 566-588 (2006) · Zbl 1173.76398
[50] Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E., GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 3, 435-447 (2008)
[51] Deen, N. G.; Solberg, T.; Hjertager, B. H., Large eddy simulation of the gas liquid flow in a square cross sectioned bubble column. Chem. Eng. Sci., 6341-6349 (2001)
[52] Harteveld, W.; Julia, J.; Mudde, R.; van den Akker, H., Large scale vortical structures in bubble columns for gas fraction in the range of 5
[53] Masterov, M.; Baltussen, M. W.; Kuipers, J. A.M., Numerical simulation of a square bubble column using Detached Eddy Simulation and Euler-Lagrange approach. Int. J. Multiph. Flow, 275-288 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.