×

Generalized Fickian approach for phase separating fluid mixtures in smoothed particle hydrodynamics. (English) Zbl 1411.76135

Summary: In the preparation process of porous polymer membranes, multi-component mass transfer during phase separation leads to the formation of pores. In this paper, we study the generalized Fickian approach for a phase separating ternary fluid mixture using the smoothed particle hydrodynamics (SPH) method. The thermodynamics are based on the Flory-Huggins equation of state for polymer mixtures with different molar weight and density of the components. We present a validation of the discrete balance equation and study the effect of different molar weight and density on the accuracy of the method separately by considering phase separation in a periodic box in two dimensions. We analyze the mass fraction distribution and the time-evolving reduction of the amount of interface using a mapping scheme based on the rheological Doi-Ohta model. We find good agreement with the diffusion-dominant power law for coarsening. Finally, we apply the proposed SPH model on a realistic Polyvinylidenfluorid/Dimethylformamid/water system. The corresponding, composition-dependent diffusion coefficients are estimated using molecular dynamics simulations.

MSC:

76M28 Particle methods and lattice-gas methods
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
76T99 Multiphase and multicomponent flows

Software:

P-LINCS; LINCS; Gromacs
Full Text: DOI

References:

[1] Strathmann, H., Introduction to membrane science and technology (2011), Wiley-VCH
[2] Maxwell, J. C., On the dynamical theory of gases, Philos. Trans. R. Soc. Lond., 157, 49-88 (1867)
[3] Stefan, J., Über das gleichgewicht und bewegung, insbesondere die diffusion von gemischen, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Wien, 2te Abteilung a, 63, 63-124 (1871)
[4] Fick, A., Ueber diffusion, Ann. Phys., 170, 1, 59-86 (1855)
[5] Taylor, R.; Krishna, R., Multicomponent mass transfer (1993), Wiley: Wiley New York
[6] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 375-389 (1977) · Zbl 0421.76032
[7] Shadloo, M.; Oger, G.; Le Touzé, D., Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges, Comput. Fluids, 136, 11-34 (2016) · Zbl 1390.76764
[8] Zhu, Y.; Fox, P. J., Smoothed particle hydrodynamics model for diffusion through porous media, Trans. Porous Med., 43, 441-471 (2001)
[9] Zhu, Y.; Fox, P. J., Simulation of pore-scale dispersion in periodic porous media using smoothed particle hydrodynamics, J. Comp. Phys., 182, 622-645 (2002) · Zbl 1058.76594
[10] Aristodemo, F.; Federico, I.; Veltri, P.; Panizzo, A., Two-phase sph modelling of advective diffusion processes, Environ. Fluid Mech., 10, 4, 451-470 (2010)
[11] Tartakovsky, A. M.; Meakin, P.; Scheibe, T. D.; West, R. M.E., Simulations of reactive transport and precipitation with smoothed particle hydrodynamics, J. Comput. Phys., 222, 654-672 (2007) · Zbl 1147.76624
[12] Adami, S.; Hu, X. Y.; Adams, N. A., A conservative sph method for surfactant dynamics, J. Comput. Phys., 229, 1909-1926 (2010) · Zbl 1329.76281
[13] Hirschler, M.; Huber, M.; Säckel, W.; Kunz, P.; Nieken, U., An application of the cahn-hilliard approach to smoothed particle hydrodynamics, Math. Prob. Eng., 2014, 694894 (2014) · Zbl 1407.76120
[14] Okuzono, T., Smoothed-particle method for phase separation in polymer mixtures, Phys. Rev. E, 56 (4), 4416 (1997)
[15] Thieulot, C.; Janssen, L. P.B. M., Smoothed particle hydrodynamics model for phase separating fluid mixtures. i. general equations, Phys. Rev. E, 72, 016713 (2005)
[16] Pütz, M.; Nielaba, P., Effects of temperature on spinodal decomposition and domain growth of liquid-vapor systems with smoothed particle hydrodynamics, Phys. Rev. E, 91, 032303 (2015)
[17] Ren, B.; Li, C.; Yan, X.; Lin, M. C.; Bonet, J.; Hu, S.-M., Multiple-fluid sph simulation using a mixture model, ACM Trans. Graph., 33, 5, Article171 (2014) · Zbl 1380.65045
[18] Hirschler, M.; Säckel, W.; Nieken, U., On Maxwell-Stefan diffusion in smoothed particle hydrodynamics, Int. J. Heat Mass Trans., 103, 548-554 (2016)
[19] Hirschler, M.; Kunz, P.; Huber, M.; Hahn, F.; Nieken, U., Open boundary conditions for ISPH and their application to micro-flow, J. Comput. Phys., 307, 614-633 (2016) · Zbl 1351.76236
[20] Abraham MJ, Van Der Spoel D, Lindahl E, Hess B. The gromacs Development Team. GROMACS User Manual Version 5.0. 22014.; Abraham MJ, Van Der Spoel D, Lindahl E, Hess B. The gromacs Development Team. GROMACS User Manual Version 5.0. 22014.
[21] Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B., Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 1, 19-25 (2015)
[22] Bird, R. B.; Stewart, W. E.; Lightfoot, E. N., Transport phenomena, revised second ed (2007), Wiley: Wiley New York
[23] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system. i. interfacial free energy, J. Chem. Phys., 28 (2), 258-267 (1958) · Zbl 1431.35066
[24] Mairhofer, J.; Gross, J., Modeling properties of the one-dimensional vapor-liquid interface: application of classical density functional and density gradient theory, Fluid Phase Equilib., 458, 243-252 (2018)
[25] Flory, P. J., Thermodynamics of high polymer solutions, J. Chem. Phys., 10, 51-61 (1942)
[26] Huggins, M. L., Some properties of solutions of long-chain compounds, J. Phys. Chem., 46, 151-158 (1942)
[27] Zhou, D.; Zhang, P.; E, W., Modified models of polymer phase separation, Phys. Rev. E, 73, 061801 (2006)
[28] Monaghan, J. J., Smoothed particle hydrodynamics, Ann. Rev. Stron. Astrphys., 30, 543-574 (1992)
[29] Monaghan, J. J., Smoothed particle hydrodynamics and its diverse applications, Ann. Rev. Fluid Mech., 44, 323-346 (2012) · Zbl 1361.76019
[30] Liu, M. B.; Liu, G. R., Smoothed particle hydrodynamics (SPH): an overview and recent developments, Arch. Comput. Method Eng., 17, 25-76 (2010) · Zbl 1348.76117
[31] Wendland, H., Piecewise polynominal, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math., 4, 389-396 (1995) · Zbl 0838.41014
[32] Brookshaw, L., A method of calculating radiative heat diffusion in particle simulations, Proc. ASA, 6(2), 207-210 (1985)
[33] Price, D. J.; Monaghan, J. J., Smoothed particle magnetohydrodynamics II. variational principles and variable smoothing length terms, Mon. Not. R. Astron. Soc., 348, 139 (2004)
[34] Euler L. Institutiones calculi integralis Petersburg: Acad. Imp. Reprinted in OO. 1768.; Euler L. Institutiones calculi integralis Petersburg: Acad. Imp. Reprinted in OO. 1768.
[35] Hockney, R. W., Potential Ccalculation and Some Applications, Tech. Rep (1970), Langley Research Center, Hampton, Va.
[36] Páll, S.; Hess, B., A flexible algorithm for calculating pair interactions on simd architectures, Comput. Phys. Commun., 184, 12, 2641-2650 (2013)
[37] Nymand, T. M.; Linse, P., Ewald summation and reaction field methods for potentials with atomic charges, dipoles, and polarizabilities, J. Chem. Phys., 112, 14, 6152-6160 (2000)
[38] Darden, T.; York, D.; Pedersen, L., Particle mesh ewald: an N · log(N) method for ewald sums in large systems, J. Chem. Phys., 98, 12, 10089-10092 (1993)
[39] Hess, B., P-LINCS: a parallel linear constraint solver for molecular simulation, J. Chem. Theory Comput., 4, 1, 116-122 (2008)
[40] Hess, B.; Bekker, H.; Berendsen, H. J.C.; Fraaije, J. G.E. M., LINCS: a linear constraint solver for molecular simulations, J. Comput. Chem., 18, 12, 1463-1472 (1997)
[41] Bussi, G.; Donadio, D.; Parrinello, M., Canonical sampling through velocity rescaling, J. Chem. Phys., 126, 1, 014101 (2007)
[42] Basconi, J. E.; Shirts, M. R., Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations, J. Chem. Theory Comput., 9, 7, 2887-2899 (2013)
[43] Berendsen, H. J.C.; Postma, J. P.M.v.; van Gunsteren, W. F.; DiNola, A. R.H. J.; Haak, J. R., Molecular dynamics with coupling to an external bath, J. Chem. Phys., 81, 8, 3684-3690 (1984)
[44] Caleman, C.; van Maaren, P. J.; Hong, M.; Hub, J. S.; Costa, L. T.; van der Spoel, D., Force field benchmark of organic liquids: density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant, J. Chem. Theory Comput., 8, 1, 61-74 (2011)
[45] van der Spoel, D.; van Maaren, P. J.; Caleman, C., GROMACS molecule & liquid database, Bioinformatics, 28, 5, 752-753 (2012)
[46] van der Spoel D, et al. Convergence of md simulations of liquids in different software packages. 2017.; van der Spoel D, et al. Convergence of md simulations of liquids in different software packages. 2017.
[47] Jorgensen WL, Tirado-Rives J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proceedings of the national academy of sciences of the United States of America2005; 102(19):6665-6670.; Jorgensen WL, Tirado-Rives J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proceedings of the national academy of sciences of the United States of America2005; 102(19):6665-6670.
[48] Dodda, L. S.; Vilseck, J. Z.; Tirado-Rives, J.; Jorgensen, W. L., 1.14* CM1A-LBCC: localized bond-charge corrected CM1a charges for condensed-phase simulations, J. Phys. Chem. B, 121, 15, 3864-3870 (2017)
[49] Dodda, L. S.; Cabeza de Vaca, I.; Tirado-Rives, J.; Jorgensen, W. L., Ligpargen web server: an automatic OPLS-AA parameter generator for organic ligands, Nucleic Acids Res., 45, W1, W331-W336 (2017)
[50] Abascal, J. L.F.; Vega, C., A general purpose model for the condensed phases of water: TIP4p/2005, J. Chem. Phys., 123, 23, 234505 (2005)
[51] Vega, C.; Abascal, J. L.F., Simulating water with rigid non-polarizable models: a general perspective, Phys. Chem. Chem. Phys., 13, 44, 19663-19688 (2011)
[52] Einstein, A., Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen, Annalen der Physik, 322, 8, 549-560 (1905) · JFM 36.0975.01
[53] Allen MP, Tildesley DJ. Computer Simulation of Liquids Oxford Univ. Press. 1987.; Allen MP, Tildesley DJ. Computer Simulation of Liquids Oxford Univ. Press. 1987. · Zbl 0703.68099
[54] Yeh, I.-C.; Hummer, G., System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions, J. Phys. Chem. B, 108, 40, 15873-15879 (2004)
[55] Liftshitz, I. M.; Slyozov, V. V., The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19, 35-50 (1961)
[56] Doi, M.; Ohta, T., Dynamics and rheology of complex interfaces. i, J. Chem. Phys., 85, 1242 (1991)
[57] Jelic, A.; Ilg, P.; Öttinger, H. C., Bridging length and time scales in sheared demixing systems: from the cahn-hilliard to the doi-ohta model, Phys. Rev. E, 81, 011131 (2010)
[58] Jelić, A., Bridging scales in complex fluids out of equilibrium (2009), ETH Zurich, Ph.D. thesis
[59] Zander, C.; Hopp-Hirschler, M.; Nieken, U., Mesoscopic simulation and characterization of the morphological evolution in phase separating fluid mixtures, Comput. Mater. Sci., 149, 267-281 (2018)
[60] Bernal-García, J. M.; Guzmán-López, A.; Cabrales-Torres, A.; Estrada-Baltazar, A.; Iglesias-Silva, G. A., Densities and viscosities of (n, n-dimethylformamide+ water) at atmospheric pressure from (283.15 to 353.15) k, J. Chem. Eng. Data, 53, 4, 1024-1027 (2008)
[61] Suárez-Iglesias, O.; Medina, I.; Sanz, M.d.l. A.; Pizarro, C.; Bueno, J. L., Self-diffusion in molecular fluids and noble gases: available data, J. Chem. Eng. Data, 60, 10, 2757-2817 (2015)
[62] Volpe, C. D.; Guarino, R.; Sartorio, G.; Vitagliano, V., Diffusion, viscosity, and refractivity data on the system dimethylformamide-water at 20 and 40. degree. c, J. Chem. Eng. Data, 31, 1, 37-40 (1986)
[63] Wang, J.; Gao, W.; Zhong, H.; Liang, C.; Chen, X.; Lüdemann, H.-D., A systematic study on the intradiffusion and structure of n, n-dimethylformamide – water mixtures: by experiment and molecular dynamics simulation, RSC Adv., 6, 88, 85603-85611 (2016)
[64] Markthaler, D.; Zeman, J.; Baz, J.; Smiatek, J.; Hansen, N., Validation of trimethylamine-n-oxide (TMAO) force fields based on thermophysical properties of aqueous TMAO solutions, J. Phys. Chem. B, 121, 47, 10674-10688 (2017)
[65] Henne, A. L.; Hinkamp, J. B., The synthesis and directed chlorination of 2, 2-difluorobutane, J. Am. Chem. Soc., 67, 7, 1194-1197 (1945)
[66] Henne, A. L.; Renoll, M. W.; Leicester, H. M., Aliphatic difluorides, J. Am. Chem. Soc., 61, 4, 938-940 (1939)
[67] Stepanov, I.; Burmakov, A.; Kunshenko, B.; Alekseeva, L.; Yagupolskii, L., Reaction of hydroxy and carbonyl-compounds with sulfur-tetrafluoride. 9. reactions of aliphatic beta-diketones with sf4, Zhurnal Organicheskoi Khimii, 19, 2, 273-279 (1983)
[68] Lachet, V.; Teuler, J.-M.; Rousseau, B., Classical force field for hydrofluorocarbon molecular simulations. application to the study of gas solubility in poly (vinylidene fluoride), J. Phys. Chem. A, 119, 1, 140-151 (2014)
[69] Espanol, P.; Revenga, M., Smoothed dissipative particle dynamics, Phys. Rev. E, 67, 026705 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.