×

ESPResSO 3.1: molecular dynamics software for coarse-grained models. (English) Zbl 1269.82007

Griebel, Michael (ed.) et al., Meshfree methods for partial differential equations VI. Selected papers of the sixth international workshop, Bonn, Germany, October 4–6, 2011. Berlin: Springer (ISBN 978-3-642-32978-4/hbk; 978-3-642-32979-1/ebook). Lecture Notes in Computational Science and Engineering 89, 1-23 (2013).
Summary: ESPResSo is a package for molecular dynamics (MD) simulations of coarse-grained models. We present the most recent version (3.1) of our software, highlighting some recent algorithmic extensions to version 1.0 presented in a previous paper [H. J. Limbach et al., “ESPResSo – an extensible simulation package for research on soft matter systems”, Comput. Phys. Commun. 174, No. 9, 704–727 (2006; doi:10.1016/j.cpc.2005.10.005)]. A major strength of our package is the multitude of implemented methods for calculating Coulomb and dipolar interactions in periodic and partially periodic geometries.
Here, we present some more recent additions which include methods for systems with dielectric contrasts that frequently occur in coarse-grained models of charged systems with implicit water models, and an alternative, completely local electrostatic solver that is based on the electrodynamic equations. We also describe our approach to rigid body dynamics that uses MD particles with fixed relative positions. ESPResSo now gained the ability to add bonds during the integration, which allows to study, e.g., agglomeration. For hydrodynamic interactions, a thermalised lattice Boltzmann solver has been built into ESPResSo, which can be coupled to the MD particles. This computationally expensive algorithm can be greatly accelerated by using graphics processing units. For the analysis of time series spanning many orders of magnitude in time scales, we implemented a hierarchical generic correlation algorithm for user-configurable observables.
For the entire collection see [Zbl 1257.65003].

MSC:

82-04 Software, source code, etc. for problems pertaining to statistical mechanics
76M28 Particle methods and lattice-gas methods
82-08 Computational methods (statistical mechanics) (MSC2010)
65Y10 Numerical algorithms for specific classes of architectures
82D60 Statistical mechanics of polymers
Full Text: DOI

References:

[1] Adhikari, R.; Stratford, K.; Cates, M. E.; Wagner, A. J., Fluctuating Lattice Boltzmann. Europhys. Lett., 71, 473 (2005) · doi:10.1209/epl/i2004-10542-5
[2] Ahlrichs, P.; Dünweg, B., Simulation of a single polymer chain in solution by combining lattice boltzmann and molecular dynamics, J. Chem. Phys., 111, 8225-8239 (1999) · doi:10.1063/1.480156
[3] Arnold, A.; Holm, C., MMM2D: a fast and accurate summation method for electrostatic interactions in 2d slab geometries, Comput. Phys. Commun., 148, 327-348 (2002) · doi:10.1016/S0010-4655(02)00586-6
[4] A. Arnold, C. Holm, Efficient methods to compute long range interactions for soft matter systems, in Advanced Computer Simulation Approaches for Soft Matter Sciences II, ed. by C. Holm, K. Kremer. Advances in Polymer Sciences, vol. II (Springer, Berlin, 2005), pp. 59-109
[5] Arnold, A.; de Joannis, J.; Holm, C., Electrostatics in periodic slab geometries I, J. Chem. Phys., 117, 2496-2502 (2002) · doi:10.1063/1.1491955
[6] A. Arnold, B.A. Mann, H. Limbach, C. Holm, ESPResSo - An Extensible Simulation Package for Research on Soft Matter Systems, ed. by K. Kremer, V. Macho. Forschung und wissenschaftliches Rechnen 2003, GWDG-Bericht, vol. 63 (Gesellschaft für wissenschaftliche Datenverarbeitung mbh, Göttingen, 2004), pp. 43-59
[7] Benzi, R.; Succi, S.; Vergassola, M., The lattice Boltzmann equation: Theory and applications, Phys. Rep., 222, 145-197 (1992) · doi:10.1016/0370-1573(92)90090-M
[8] Brenner, D. W.; Shenderova, O. A.; Harrison, J. A.; Stuart, S. J.; Ni, B.; Sinnott, S. B., A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys. Condens. Matter, 14, 783 (2002) · doi:10.1088/0953-8984/14/4/312
[9] Cerdà, J. J.; Ballenegger, V.; Lenz, O.; Holm, C., P3M algorithm for dipolar interactions, J. Chem. Phys., 129, 234104 (2008) · doi:10.1063/1.3000389
[10] Deserno, M.; Holm, C., How to mesh up Ewald sums I: a theoretical and numerical comparison of various particle mesh routines, J. Chem. Phys., 109, 7678 (1998) · doi:10.1063/1.477414
[11] Deserno, M.; Holm, C., How to mesh up Ewald sums II: an accurate error estimate for the Particle-Particle-Particle-Mesh algorithm, J. Chem. Phys., 109, 7694 (1998) · doi:10.1063/1.477415
[12] Deserno, M.; Holm, C.; May, S., The fraction of condensed counterions around a charged rod: comparison of Poisson-Boltzmann theory and computer simulations, Macromolecules, 33, 199-206 (2000) · doi:10.1021/ma990897o
[13] B. Dünweg, A.J.C. Ladd, Lattice Boltzmann simulations of soft matter systems, in Advanced Computer Simulation Approaches for Soft Matter Sciences III, ed. by C. Holm, K. Kremer. Advances in Polymer Science, vol. 221 (Springer, Berlin, 2009), pp. 89-166
[14] Español, P.; Warren, P., Statistical mechanics of dissipative particle dynamics, Europhys. Lett., 30, 191 (1995) · doi:10.1209/0295-5075/30/4/001
[15] Frenkel, D.; Smit, B., Understanding Molecular Simulation (2002), San Diego: Academic, San Diego
[16] Gay, J. G.; Berne, B. J., Modification of the overlap potential to mimic a linear site-site potential, J. Chem. Phys., 74, 3316-3319 (1981) · doi:10.1063/1.441483
[17] Griebel, M.; Hamaekers, J.; Heber, F., A molecular dynamics study on the impact of defects and functionalization on the young modulus of boron-nitride nanotubes, Comput. Mater. Sci., 45, 1097-1103 (2009) · doi:10.1016/j.commatsci.2009.03.029
[18] Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E., GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory Comput., 4, 435-447 (2008) · doi:10.1021/ct700301q
[19] Hoogerbrugge, P. J.; Koelman, J. M.V. A., Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, Europhys. Lett., 19, 155-160 (1992) · doi:10.1209/0295-5075/19/3/001
[20] Humphrey, W.; Dalke, A.; Schulten, K., VMD: visual molecular dynamics, J. Mol. Graph., 14, 33-38 (1996) · doi:10.1016/0263-7855(96)00018-5
[21] Jackson, J. D., Classical Electrodynamics (1999), New York: Wiley, New York · Zbl 0920.00012
[22] Junghans, C.; Poblete, S., A reference implementation of the adaptive resolution scheme in ESPResSo, Comput. Phys. Commun., 181, 1449-1454 (2010) · Zbl 1219.81284 · doi:10.1016/j.cpc.2010.04.013
[23] Kesselheim, S.; Sega, M.; Holm, C., Applying ICC to DNA translocation: effect of dielectric boundaries, Comput. Phys. Commun., 182, 33-35 (2011) · Zbl 1216.92008 · doi:10.1016/j.cpc.2010.08.014
[24] Kolb, A.; Dünweg, B., Optimized constant pressure stochastic dynamics, J. Chem. Phys., 111, 4453-4459 (1999) · doi:10.1063/1.479208
[25] Lallemand, P.; d’Humieres, D.; Luo, L. S.; Rubinstein, R., Theory of the lattice Boltzmann method: three-dimensional model for linear viscoelastic fluids, Phys. Rev. E, 67, 021203 (2003)
[26] Limbach, H. J.; Arnold, A.; Mann, B. A.; Holm, C., ESPResSo – an extensible simulation package for research on soft matter systems, Comput. Phys. Commun., 174, 704-727 (2006) · doi:10.1016/j.cpc.2005.10.005
[27] Lobaskin, V.; Dünweg, B., A new model for simulating colloidal dynamics, New J. Phys., 6, 54 (2004) · doi:10.1088/1367-2630/6/1/054
[28] Maggs, A. C.; Rosseto, V., Local simulation algorithms for Coulombic interactions, Phys. Rev. Lett., 88, 196402 (2002) · doi:10.1103/PhysRevLett.88.196402
[29] Malevanets, A.; Kapral, R., Continuous-velocity lattice-gas model for fluid flow, Europhys. Lett., 44, 552 (1998) · doi:10.1209/epl/i1998-00508-7
[30] Martys, N. S.; Mountain, R. D., Velocity verlet algorithm for dissipative-particle-dynamics-based models of suspensions, Phys. Rev. E, 59, 3733-3736 (1999) · doi:10.1103/PhysRevE.59.3733
[31] Messina, R., Effect of image forces on polyelectrolyte adsorption at a charged surface, Phys. Rev. E, 70, 051802 (2004) · doi:10.1103/PhysRevE.70.051802
[32] MPI Forum, MPI: A Message-Passing Interface (MPI) Standard Version 1.3 (2008)
[33] NVIDIA Corporation, NVIDIA CUDA reference manual version 3.2 (2010)
[34] Pasichnyk, I.; Dünweg, B., Coulomb interactions via local dynamics: a molecular-dynamics algorithm, J. Phys. Condens. Matter, 16, 3999-4020 (2004) · doi:10.1088/0953-8984/16/38/017
[35] Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kalé, L.; Schulten, K., Scalable molecular dynamics with NAMD, J. Comput. Chem., 26, 1781-1802 (2005) · doi:10.1002/jcc.20289
[36] Ramirez, J.; Sukumaran, S. K.; Vorselaars, B.; Likhtman, A. E., Efficient on the fly calculation of time correlation functions in computer simulations, J. Chem. Phys., 133, 154103 (2010) · doi:10.1063/1.3491098
[37] Schätzel, K.; Drewel, M.; Stimac, S., Photon-correlation measurements at large lag times – improving statistical accuracy, J. Mod. Opt., 35, 711-718 (1988) · doi:10.1080/09500348814550731
[38] U.D. Schiller, Thermal fluctuations and boundary conditions in the lattice Boltzmann method. Ph.D. thesis, Johannes Gutenberg-Universität Mainz, Fachbereich 08: Physik, Mathematik und Informatik (2008)
[39] Smith, E. R., Electrostatic potentials for thin layers, Mol. Phys., 65, 1089-1104 (1988) · doi:10.1080/00268978800101621
[40] Soddemann, T.; Dünweg, B.; Kremer, K., Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations, Phys. Rev. E, 68, 46702 (2003) · doi:10.1103/PhysRevE.68.046702
[41] Succi, S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (2001), New York: Oxford University Press, New York · Zbl 0990.76001
[42] Tyagi, S.; Arnold, A.; Holm, C., ICMMM2D: an accurate method to include planar dielectric interfaces via image charge summation, J. Chem. Phys., 127, 154723 (2007) · doi:10.1063/1.2790428
[43] Tyagi, S.; Arnold, A.; Holm, C., Electrostatic layer correction with image charges: a linear scaling method to treat slab 2d + h systems with dielectric interfaces, J. Chem. Phys., 129, 204102 (2008) · doi:10.1063/1.3021064
[44] Tyagi, C.; Süzen, M.; Sega, M.; Barbosa, M.; Kantorovich, S.; Holm, C., An iterative, fast, linear-scaling method for computing induced charges on arbitrary dielectric boundaries, J. Chem. Phys., 132, 154112 (2010) · doi:10.1063/1.3376011
[45] Usta, O. B.; Ladd, A. J.C.; Butler, J. E., Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries, J. Chem. Phys., 122, 094902 (2005) · doi:10.1063/1.1854151
[46] Wolf-Gladrow, D. A., Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction (2000), New York: Springer, New York · Zbl 0999.82054 · doi:10.1007/b72010
[47] Ziegler, D. P., Boundary conditions for lattice Boltzmann simulations, J. Stat. Phys., 71, 1171-1177 (1993) · Zbl 0943.82552 · doi:10.1007/BF01049965
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.