×

A critical review on molecular dynamics applied to structure fracture and failure analysis. (English) Zbl 1511.74016

Summary: Due to the continuous exploration of ocean resources, the marine structures are gradually applied from offshore to far-reaching sea areas, and the safety and reliability of the marine structures are becoming more and more important. Fractures and failures of the marine structures are the most common structural damages while considerable numerical computational techniques are developed to investigate the failure mechanisms and health monitoring of the marine structures. This review aims to report the numerical methods for structural failure analysis from macroscopic, mesoscopic to microscopic scales, including the methods of the macroscopic continuum, lattice Boltzmann, and molecular dynamics. The fundamental theories and recent progresses in the macroscale, mesoscale and microscale are summarized to suggest the future development directions. The discussions of the latest achievements in structural failure analysis will not only deepen the understanding of the structural failure mechanisms subject to solid-fluid coupling in a marine environment, but also provide necessary guidance for engineers and researchers in this research field.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74R99 Fracture and damage
74S10 Finite volume methods applied to problems in solid mechanics
82M37 Computational molecular dynamics in statistical mechanics
82M12 Finite volume methods applied to problems in statistical mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76T10 Liquid-gas two-phase flows, bubbly flows
82C40 Kinetic theory of gases in time-dependent statistical mechanics
74-02 Research exposition (monographs, survey articles) pertaining to mechanics of deformable solids

Software:

VMD; NAMD; Gromacs; LAMMPS; OVITO
Full Text: DOI

References:

[1] Pantua, C. A.J.; Calautit, J. K.; Wu, Y., A fluid-structure interaction (FSI) and energy generation modelling for roof mounted renewable energy installations in buildings for extreme weather and typhoon resilience, Renew Energy, 160, 770-787 (2020)
[2] Jayendiran, R.; Nour, B.; Ruimi, A., Fluid-structure interaction (FSI) analysis of stent-graft for aortic endovascular aneurysm repair (EVAR): material and structural considerations, J Mech Behav Biomed Mater, 87, 95-110 (2018)
[3] Oezkaya, E.; Iovkov, I.; Biermann, D., Fluid structure interaction (FSI) modelling of deep hole twist drilling with internal cutting fluid supply, CIRP Ann, 68, 81-84 (2019)
[4] Ramesh, M.; Vijayanandh, R.; Jagadeeshwaran, P.; Deviparameswari, K.; Meenakshi, S.; Asher, P. K., Impact behavioral studies on various composite materials using fluid-structure interaction (FSI), Mater Today: Proc, 51, 1134-1140 (2022)
[5] Sun, P.-N.; Le Touzé, D.; Oger, G.; Zhang, A.-M., An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions, Ocean Eng, 221, Article 108552 pp. (2021)
[6] Dong, G.; Yan, M.; Zheng, Z.; Ma, X.; Sun, Z.; Gao, J., Experimental investigation on the hydrodynamic response of a moored ship to low-frequency harbor oscillations, Ocean Eng, 262, Article 112261 pp. (2022)
[7] Zhang, H.; Wang, H.; Cai, X.; Xie, J.; Wang, Y.; Zhang, N., Novel method for designing and optimising the floating platforms of offshore wind turbines, Ocean Eng, 266, Article 112781 pp. (2022)
[8] da Silva, L. S.P.; Sergiienko, N. Y.; Cazzolato, B.; Ding, B., Dynamics of hybrid offshore renewable energy platforms: heaving point absorbers connected to a semi-submersible floating offshore wind turbine, Renew Energy, 199, 1424-1439 (2022)
[9] Xue, Y.; Liu, R.; Li, Z.; Han, D., A review for numerical simulation methods of ship-ice interaction, Ocean Eng (2020), Elsevier Enhanced Reader n.d
[10] Arumuga Perumal, D.; Dass, A. K., A review on the development of lattice Boltzmann computation of macro fluid flows and heat transfer, Alexand Eng J, 54, 955-971 (2015)
[11] Urata, S.; Hirobe, S.; Oguni, K.; Li, S., Atomistic to continuum simulations of fracture and damage evolutions in oxide glass and glass-ceramic materials: a critical review, J Non-Crystall Solids X, 15, Article 100102 pp. (2022)
[12] Gao, J.; Hu, Z.; Yang, Q.; Liang, X.; Wu, H., Fluid flow and heat transfer in microchannel heat sinks: modelling review and recent progress, Therm Sci Eng Progr, 29, Article 101203 pp. (2022)
[13] Ferziger, J. H.; Perić, M.; Street, RL., Computational methods for fluid dynamics (2020), Springer International Publishing: Springer International Publishing Cham · Zbl 1452.76001
[14] Qin, Q.; Song, L.; Wang, Q., High-order meshless method based on the generalized finite difference method for 2D and 3D elliptic interface problems, Appl Math Lett, 137, Article 108479 pp. (2023) · Zbl 1524.65719
[15] Xiong, Z.; Wang, X.; He, M.; Benabou, L.; Feng, Z., Investigation on thermal conductivity of silver-based porous materials by finite difference method, Mater Today Commun, Article 104897 pp. (2022)
[16] O’Sullivan, D.; Rigopoulos, S., A conservative finite volume method for the population balance equation with aggregation, fragmentation, nucleation and growth, Chem Eng Sci, 263, Article 117925 pp. (2022)
[17] Zhang, J., A family of quadratic finite volume method for solving the Stokes equation, Comput Math Appl, 117, 155-186 (2022) · Zbl 1524.65734
[18] Wang, X.; Meng, X.; Zhang, S.; Zhou, H., A modified weak Galerkin finite element method for the linear elasticity problem in mixed form, J Comput Appl Math, 420, Article 114743 pp. (2023) · Zbl 1497.65239
[19] Boon, W. M.; Fumagalli, A., A multipoint vorticity mixed finite element method for incompressible Stokes flow, Appl Math Lett, 137, Article 108498 pp. (2023) · Zbl 1503.76060
[20] Chen, Y.; Li, Q.; Yi, H.; Huang, Y., Immersed finite element method for time fractional diffusion problems with discontinuous coefficientsImage 1, Comput Math Appl, 128, 121-129 (2022) · Zbl 1504.65200
[21] Chatterjee, S.; Ghanta, K. C.; Hens, A., Study of multiphase flow inside straight and spiral microchannel and effect of two phase flow on Dean’s vortices, Chem Eng Res Des, 165, 398-408 (2021)
[22] Feng, Z.; Luo, X.; Guo, F.; Li, H.; Zhang, J., Numerical investigation on laminar flow and heat transfer in rectangular microchannel heat sink with wire coil inserts, Appl Therm Eng, 116, 597-609 (2017)
[23] He, W.; Mashayekhi, R.; Toghraie, D.; Akbari, O. A.; Li, Z.; Tlili, I., Hydrothermal performance of nanofluid flow in a sinusoidal double layer microchannel in order to geometric optimization, Int Commun Heat Mass Transf, 117, Article 104700 pp. (2020)
[24] Ling, W.; Zhou, W.; Liu, C.; Zhou, F.; Yuan, D.; Huang, J., Structure and geometric dimension optimization of interlaced microchannel for heat transfer performance enhancement, Appl Therm Eng, 170, Article 115011 pp. (2020)
[25] Peng, M.; Chen, L.; Ji, W.; Tao, W., Numerical study on flow and heat transfer in a multi-jet microchannel heat sink, Int J Heat Mass Transf, 157, Article 119982 pp. (2020)
[26] Hosseinpour, V.; Kazemeini, M.; Rashidi, A., Developing a metamodel based upon the DOE approach for investigating the overall performance of microchannel heat sinks utilizing a variety of internal fins, Int J Heat Mass Transf, 149, Article 119219 pp. (2020)
[27] Zhao, J.; Zhu, R. C.; Zhou, WJ., Implementation of a velocity decomposition method coupled with volume-of-fluid method for simulating free-surface flows, Ocean Eng, 263, Article 112339 pp. (2022)
[28] Kheirabadi, A. C.; Nagamune, R., A low-fidelity dynamic wind farm model for simulating time-varying wind conditions and floating platform motion, Ocean Eng, 234, Article 109313 pp. (2021)
[29] Ohashi, K., Development of numerical method to simulate flows around a ship at propulsion conditions in regular waves coupling with the ship propulsion plant model, Appl Ocean Res, 73, 141-148 (2018)
[30] Dunbar, A. J.; Craven, B. A.; Paterson, EG., Development and validation of a tightly coupled CFD/6-DOF solver for simulating floating offshore wind turbine platforms, Ocean Eng, 110, 98-105 (2015)
[31] Suman, S.; Dwivedi, K.; Anand, S.; Pathak, H., XFEM-ANN approach to predict the fatigue performance of a composite patch repaired aluminium panel, Compos Part C Open Access, 9, Article 100326 pp. (2022)
[32] Bakalakos, S.; Georgioudakis, M.; Papadrakakis, M., Domain decomposition methods for 3D crack propagation problems using XFEM, Comput Meth Appl Mech Eng, Article 115390 pp. (2022) · Zbl 1507.74447
[33] Bansal, M.; Sarkar, S.; Singh, IV., An XFEM-strain gradient damage model for efficient modeling of materials with reinforcement particles, Eng Fract Mech, 271, Article 108667 pp. (2022)
[34] Rodríguez-Arana, B.; Bergara, A.; Gil-Negrete, N.; Nieto, J., XFEM rolling contact fatigue crack propagation in railways considering creepages on contact shear stresses, Eng Fract Mech, Article 108896 pp. (2022)
[35] Zhang, J.; Yu, H.; Xu, W.; Lv, C.; Micheal, M.; Shi, F., A hybrid numerical approach for hydraulic fracturing in a naturally fractured formation combining the XFEM and phase-field model, Eng Fract Mech, 271, Article 108621 pp. (2022)
[36] Wang, M.; Feng, S.; Incecik, A.; Królczyk, G.; Li, Z., Structural fatigue life prediction considering model uncertainties through a novel digital twin-driven approach, Comput Meth Appl Mech Eng, 391, Article 114512 pp. (2022) · Zbl 1507.74424
[37] Wen, L.; Tian, R., Improved XFEM: accurate and robust dynamic crack growth simulation, Comput Meth Appl Mech Eng, 308, 256-285 (2016) · Zbl 1439.74475
[38] Nasri, K.; Abbadi, M.; Zenasni, M.; Ghammouri, M.; Azari, Z., Double crack growth analysis in the presence of a bi-material interface using XFEM and FEM modelling, Eng Fract Mech, 132, 189-199 (2014)
[39] Kumar, M.; Bhuwal, A. S.; Singh, I. V.; Mishra, B. K.; Ahmad, S.; Rao, A. V., Nonlinear fatigue crack growth simulations using J-integral decomposition and XFEM, Proc Eng, 173, 1209-1214 (2017)
[40] Giovanardi, B.; Scotti, A.; Formaggia, L., A hybrid XFEM -Phase field (Xfield) method for crack propagation in brittle elastic materials, Comput Meth Appl Mech Eng, 320, 396-420 (2017) · Zbl 1439.74350
[41] Lu, Z.; Liu, Y., Concurrent fatigue crack growth simulation using extended finite element method, Front Archit Civ Eng China, 4, 339-347 (2010)
[42] Ge, R.; Cumming, D. J.; Smith, RM., Discrete element method (DEM) analysis of lithium ion battery electrode structures from X-ray tomography-the effect of calendering conditions, Powder Technol, 403, Article 117366 pp. (2022)
[43] Shaikh, S. A.; Li, Y.; Ma, Z.; Chandio, F. A.; Tunio, M. H.; Liang, Z., Discrete element method (DEM) simulation of single grouser shoe-soil interaction at varied moisture contents, Comput Electron Agric, 191, Article 106538 pp. (2021)
[44] Bußmann, S.; Kruggel-Emden, H.; Reichert, M., Realizing fragment spawning and fragment growth in the parallelized Discrete Element Method (DEM) during modelling of comminution, Adv Powder Technol, 32, 2171-2191 (2021)
[45] Rasera, J. N.; Cilliers, J. J.; Lamamy, J.-A.; Hadler, K., A methodology for tribocharger design optimisation using the Discrete Element Method (DEM), Powder Technol, 413, Article 118035 pp. (2023)
[46] Gong, H.; Chen, Y.; Wu, S.; Tang, Z.; Liu, C.; Wang, Z., Simulation of canola seedling emergence dynamics under different soil compaction levels using the discrete element method (DEM), Soil Tillage Res, 223, Article 105461 pp. (2022)
[47] Hirobe, S.; Oguni, K., Coupling analysis of pattern formation in desiccation cracks, Comput Meth Appl Mech Eng, 307, 470-488 (2016) · Zbl 1439.74352
[48] Oguni, K.; Wijerathne, M. L.L.; Okinaka, T.; Hori, M., Crack propagation analysis using PDS-FEM and comparison with fracture experiment, Mech Mater, 41, 1242-1252 (2009)
[49] Zhang, D.; Luo, Y.; Zhao, Y.; Li, Y.; Mei, N.; Yuan, H., LBM-PFM simulation of directional frozen crystallisation of seawater in the presence of a single bubble, Desalination, 542, Article 116065 pp. (2022)
[50] Song, J.; Zhang, D.; Yuan, H.; Zhang, J.; Zhou, P.; Li, Y., Sea water frozen crystalisation impacted by flow and heterogeneous nucleation: PFM-LBM coupled modeling, simulation and experiments, Desalination, 524, Article 115484 pp. (2022)
[51] Huang, J.; Li, Y.; Yuan, G.; Liu, Q.; Zuo, T.; Xu, G., Corrosion and microstructure evolution of He+ plasma irradiated tungsten PFMs, Fusion Eng Des, 184, Article 113279 pp. (2022)
[52] Bourdin, B.; Marigo, J.-J.; Maurini, C.; Sicsic, P., Morphogenesis and propagation of complex cracks induced by thermal shocks, Phys Rev Lett, 112, Article 014301 pp. (2014)
[53] Jing, L., A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering, Int J Rock Mech Min Sci, 40, 283-353 (2003)
[54] Chen, L.; Kang, Q.; Mu, Y.; He, Y.-L.; Tao, W-Q., A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications, Int J Heat Mass Transf, 76, 210-236 (2014)
[55] He, Y.-L.; Liu, Q.; Li, Q.; Tao, W-Q., Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: a review, Int J Heat Mass Transf, 129, 160-197 (2019)
[56] Li, Q.; Luo, K. H.; Kang, Q. J.; He, Y. L.; Chen, Q.; Liu, Q., Lattice Boltzmann methods for multiphase flow and phase-change heat transfer, Prog Energy Combust Sci, 52, 62-105 (2016)
[57] Sidik, N. A.C.; Mamat, R., Recent progress on lattice Boltzmann simulation of nanofluids: a review, Int Commun Heat Mass Transfer, 66, 11-22 (2015)
[58] Yang, F.; Gu, X.; Xia, X.; Zhang, Q., A peridynamics-immersed boundary-lattice Boltzmann method for fluid-structure interaction analysis, Ocean Eng, 264, Article 112528 pp. (2022)
[59] Higuera, F. J.; Succi, S.; Benzi, R., Lattice gas dynamics with enhanced collisions, EPL, 9, 345 (1989)
[60] He, X.; Luo, L.-S., Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys Rev E, 56, 6811-6817 (1997)
[61] He, X.; Luo, L-S., A priori derivation of the lattice Boltzmann equation, Phys Rev E, 55, R6333-R6336 (1997)
[62] Zhao, Y., Lattice Boltzmann based PDE solver on the GPU, Vis Comput, 24, 323-333 (2008)
[63] Liang, H.; Zhang, C.; Du, R.; Wei, Y., Lattice Boltzmann method for fractional Cahn-Hilliard equation, Commun Nonlinear Sci Numer Simul, 91, Article 105443 pp. (2020) · Zbl 1455.65201
[64] Chen, Y.; Zhang, Q.; Wang, X.; Yao, Z., Interactions between a cavitation bubble and solidification front under the effects of ultrasound: experiments and lattice Boltzmann modeling, Ultrason Sonochem, 91, Article 106221 pp. (2022)
[65] Samanta, R.; Chattopadhyay, H.; Guha, C., A review on the application of lattice Boltzmann method for melting and solidification problems, Comput Mater Sci, 206, Article 111288 pp. (2022)
[66] Alemani, D.; Pappalardo, F.; Pennisi, M.; Motta, S.; Brusic, V., Combining cellular automata and lattice Boltzmann method to model multiscale avascular tumor growth coupled with nutrient diffusion and immune competition, J Immunol Methods, 376, 55-68 (2012)
[67] Nouri, M.; Hamila, R.; Perre, P., A double distribution lattice Boltzmann scheme for unsteady conjugate heat transfer: the DD-CHT LB method, Int J Heat Mass Transf, 137, 609-614 (2019)
[68] Huang, C.; Chai, Z.; Shi, B., A recursive finite-difference lattice Boltzmann model for the convection-diffusion equation with a source term, Appl Math Lett, 132, Article 108139 pp. (2022) · Zbl 1524.76285
[69] D’Orazio, A.; Karimipour, A., A useful case study to develop lattice Boltzmann method performance: gravity effects on slip velocity and temperature profiles of an air flow inside a microchannel under a constant heat flux boundary condition, Int J Heat Mass Transf, 136, 1017-1029 (2019)
[70] Fu, Y.; Bai, L.; Bi, K.; Zhao, S.; Jin, Y.; Cheng, Y., Numerical study of Janus droplet formation in microchannels by a lattice Boltzmann method, Chem Eng Process, 119, 34-43 (2017)
[71] Ghadirzadeh, S.; Kalteh, M., Lattice Boltzmann simulation of temperature jump effect on the nanofluid heat transfer in an annulus microchannel, Int J Mech Sci, 133, 524-534 (2017)
[72] Wang, H.; Fu, Y.; Wang, Y.; Yan, L.; Cheng, Y., Three-dimensional lattice Boltzmann simulation of Janus droplet formation in Y-shaped co-flowing microchannel, Chem Eng Sci, 225, Article 115819 pp. (2020)
[73] Yang, L.; Yu, Y.; Pei, H.; Gao, Y.; Hou, G., Lattice Boltzmann simulations of liquid flows in microchannel with an improved slip boundary condition, Chem Eng Sci, 202, 105-117 (2019)
[74] Fallah, K.; Taeibi Rahni, M., Lattice Boltzmann simulation of drop formation in T-junction microchannel, J Mol Liq, 240, 723-732 (2017)
[75] Kamali, R.; Soloklou, M. N.; Hadidi, H., Numerical simulation of electroosmotic flow in rough microchannels using the lattice Poisson-Nernst-Planck methods, Chem Phys, 507, 1-9 (2018)
[76] Zhou, J.; Zhang, S.; Tian, F.; Shao, C., Simulation of oscillation of magnetic particles in 3D microchannel flow subjected to alternating gradient magnetic field, J Magn Magn Mater, 473, 32-41 (2019)
[77] Ahangar, E. K.; Ayani, M. B.; Esfahani, JA., Simulation of rarefied gas flow in a microchannel with backward facing step by two relaxation times using Lattice Boltzmann method - Slip and transient flow regimes, Int J Mech Sci, 157-158, 802-815 (2019)
[78] Wang, C. S.; Wei, T. C.; Shen, P. Y.; Liou, T-M., Lattice Boltzmann study of flow pulsation on heat transfer augmentation in a louvered microchannel heat sink, Int J Heat Mass Transf, 148, Article 119139 pp. (2020)
[79] Ahangar, E. K.; Ayani, M. B.; Esfahani, J. A.; Kim, KC., Lattice Boltzmann simulation of diluted gas flow inside irregular shape microchannel by two relaxation times on the basis of wall function approach, Vacuum, 173, Article 109104 pp. (2020)
[80] Afrouzi, H. H.; Hosseini, M.; Toghraie, D.; Mehryaar, E.; Afrand, M., Thermo-hydraulic characteristics investigation of nanofluid heat transfer in a microchannel with super hydrophobic surfaces under non-uniform magnetic field using Incompressible Preconditioned Lattice Boltzmann Method (IPLBM), Phys A, 553, Article 124669 pp. (2020) · Zbl 1527.82066
[81] Zhang, Y.; Xie, G.; Karimipour, A., Comprehensive analysis on the effect of asymmetric heat fluxes on microchannel slip flow and heat transfer via a lattice Boltzmann method, Int Commun Heat Mass Transf, 118, Article 104856 pp. (2020)
[82] Parmigiani, A.; Huber, C.; Bachmann, O.; Chopard, B., Pore-scale mass and reactant transport in multiphase porous media flows, J Fluid Mech, 686, 40-76 (2011) · Zbl 1241.76442
[83] Hu, Y.; Li, D.; Shu, S.; Niu, X., Lattice Boltzmann simulation for three-dimensional natural convection with solid-liquid phase change, Int J Heat Mass Transf, 113, 1168-1178 (2017)
[84] Qiu, L.-C.; Tian, L.; Liu, X.-J.; Han, Y., A 3D multiple-relaxation-time LBM for modeling landslide-induced tsunami waves, Eng Anal Boundary Elem, 102, 51-59 (2019) · Zbl 1464.76155
[85] Sato, K.; Kawasaki, K.; Koshimura, S., A numerical study of the MRT-LBM for the shallow water equation in high Reynolds number flows: an application to real-world tsunami simulation, Nucl Eng Des, 404, Article 112159 pp. (2023)
[86] Xue, Y.; Liu, R.; Li, Z.; Han, D., A review for numerical simulation methods of ship-ice interaction, Ocean Eng, 215, Article 107853 pp. (2020)
[87] Jiao, K.; Han, D.; Li, J.; Bai, B.; Gong, L.; Yu, B., A novel LBM-DEM based pore-scale thermal-hydro-mechanical model for the fracture propagation process, Comput Geotech, 139, Article 104418 pp. (2021)
[88] Succi, S., Lattice Boltzmann across scales: from turbulence to DNA translocation, Eur Phys J B, 64, 471-479 (2008)
[89] Zhang, J.; Ghosh, S., Molecular dynamics based study and characterization of deformation mechanisms near a crack in a crystalline material, J Mech Phys Solids, 61, 1670-1690 (2013)
[90] Dayal, K.; James, R. D., Nonequilibrium molecular dynamics for bulk materials and nanostructures, J Mech Phys Solids, 58, 145-163 (2010) · Zbl 1193.82038
[91] Lau, D.; Jian, W.; Yu, Z.; Hui, D., Nano-engineering of construction materials using molecular dynamics simulations: prospects and challenges, Compos Part B Eng, 143, 282-291 (2018)
[92] Seyyedattar, M.; Zendehboudi, S.; Butt, S., Molecular dynamics simulations in reservoir analysis of offshore petroleum reserves: a systematic review of theory and applications, Earth Sci Rev, 192, 194-213 (2019)
[93] Krishna, S.; Sreedhar, I.; Patel, CM., Molecular dynamics simulation of polyamide-based materials – a review, Comput Mater Sci, 200, Article 110853 pp. (2021)
[94] Xu, J.; Chen, X.; Yang, G.; Niu, X.; Chang, F.; Lacidogna, G., Review of research on micromechanical properties of cement-based materials based on molecular dynamics simulation, Constr Build Mater, 312, Article 125389 pp. (2021)
[95] Huang, Y.; Shen, X. N.; You, X., A discrete shuffled frog-leaping algorithm based on heuristic information for traveling salesman problem, Appl Soft Comput, 102, Article 107085 pp. (2021)
[96] Dash, R.; Dash, R.; Rautray, R., An evolutionary framework based microarray gene selection and classification approach using binary shuffled frog leaping algorithm, J King Saud Univ Comput Inf Sci, 34, 880-891 (2022)
[97] Spreiter, Q.; Walter, M., Classical molecular dynamics simulation with the velocity Verlet algorithm at strong external magnetic fields, J Comput Phys, 152, 102-119 (1999) · Zbl 0967.81071
[98] Palmer, BJ., Direct application of shake to the velocity Verlet algorithm, J Comput Phys, 104, 470-472 (1993) · Zbl 0774.65045
[99] Phillips, J. C.; Hardy, D. J.; Maia, J. D.C.; Stone, J. E.; Ribeiro, J. V.; Bernardi, R. C., Scalable molecular dynamics on CPU and GPU architectures with NAMD, J Chem Phys, 153, Article 044130 pp. (2020)
[100] Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M., The Amber biomolecular simulation programs, J Comput Chem, 26, 1668-1688 (2005)
[101] Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, HJC., GROMACS: fast, flexible, and free, J Comput Chem, 26, 1701-1718 (2005)
[102] Fan, X. H.; Xu, B.; Xu, Y.; Li, J.; Shi, L.; Wang, F. M., Application of materials studio modeling in crystal structure, Adv Mater Res, 706-708, 7-10 (2013)
[103] Thompson, A. P.; Aktulga, H. M.; Berger, R.; Bolintineanu, D. S.; Brown, W. M.; Crozier, P. S., LAMMPS a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Comput Phys Commun, 271, Article 108171 pp. (2022) · Zbl 1516.74108
[104] Stukowski, A., Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool, Modell Simul Mater Sci Eng, 18, Article 015012 pp. (2009)
[105] Humphrey, W.; Dalke, A.; Schulten, K., VMD: visual molecular dynamics, J Mol Graph, 14, 33-38 (1996)
[106] Tong, Z. X.; He, Y. L.; Tao, W. Q., A review of current progress in multiscale simulations for fluid flow and heat transfer problems: the frameworks, coupling techniques and future perspectives, Int J Heat Mass Transf, 137, 1263-1289 (2019)
[107] Peng, Y.; Zarringhalam, M.; Barzinjy, A. A.; Toghraie, D.; Afrand, M., Effects of surface roughness with the spherical shape on the fluid flow of argon atoms flowing into the microchannel, under boiling condition using molecular dynamic simulation, J Mol Liq, 297, Article 111650 pp. (2020)
[108] Arjmandfard, A.; Toghraie, D.; Mehmandoust, B.; Hashemian, M.; Karimipour, A., The study of atomic porosity effect on water/Fe nanofluid flow in a microchannel with a molecular dynamics method, J Mol Liq, 317, Article 114291 pp. (2020)
[109] Che, Y.; Qi, Y.; Pan, S.; Niu, S.; Zhang, H., Microscopic mechanism of alternating oscillations in a microchannel pulse tube based on molecular dynamics, J Mol Liq, 313, Article 113486 pp. (2020)
[110] Che, Y.; Qi, Y.; Niu, S.; Liu, Y.; Zhang, H., Simulation on alternating oscillation flow in microchannel pulse tube coupled with active piston using non-equilibrium molecular dynamics, Chem Phys Lett, 759, Article 137965 pp. (2020)
[111] Zarringhalam, M.; Ahmadi-Danesh-Ashtiani, H.; Toghraie, D.; Fazaeli, R., Molecular dynamic simulation to study the effects of roughness elements with cone geometry on the boiling flow inside a microchannel, Int J Heat Mass Transf, 141, 1-8 (2019)
[112] Shahsavar Goldanlou, A.; Zarringhalam, M.; Shirani, N.; Alizadeh, A.; Toghraie, D.; Rostami, S., Investigation the effects of an external driving force and cone shape of roughness on the phase change behavior of Argon fluid within a microchannel by molecular dynamic simulation, J Mol Liq, 313, Article 113503 pp. (2020)
[113] Peng, Y.; Zarringhalam, M.; Hajian, M.; Toghraie, D.; Tadi, S. J.; Afrand, M., Empowering the boiling condition of Argon flow inside a rectangular microchannel with suspending silver nanoparticles by using of molecular dynamics simulation, J Mol Liq, 295, Article 111721 pp. (2019)
[114] Yang, Y.; Cao, J., Interfacial heat transfer behavior of graphene-based filler and calcium-silicate-hydrate in cement composites, Int J Heat Mass Transf, 176, Article 121165 pp. (2021)
[115] Liu, K.; Cheng, X.; Ma, Y.; Gao, X.; Zhang, C.; Li, Z., Analysis of interfacial nanostructure and interaction mechanisms between cellulose fibres and calcium silicate hydrates using experimental and molecular dynamics simulation data, Appl Surf Sci, 506, Article 144914 pp. (2020)
[116] Eftekhari, M.; Mohammadi, S.; Khanmohammadi, M., A hierarchical nano to macro multiscale analysis of monotonic behavior of concrete columns made of CNT-reinforced cement composite, Constr Build Mater, 175, 134-143 (2018)
[117] Hajilar, S.; Shafei, B., Nano-scale investigation of elastic properties of hydrated cement paste constituents using molecular dynamics simulations, Comput Mater Sci, 101, 216-226 (2015)
[118] Murray, S. J.; Subramani, V. J.; Selvam, R. P.; Hall, KD., Molecular dynamics to understand the mechanical behavior of cement paste, Transp Res Rec, 2142, 75-82 (2010)
[119] Liu, L.; Jaramillo-Botero, A.; Goddard, W. A.I.; Sun, H., Development of a ReaxFF reactive force field for ettringite and study of its mechanical failure modes from reactive dynamics simulations, J Phys Chem A, 116, 3918-3925 (2012)
[120] Brochard L., Hantal G., Laubie H., Ulm F.J., Pellenq RJ-M. Fracture mechanisms in organic-rich shales: role of Kerogen. Poromech V, 2471-80. 10.1061/9780784412992.288.
[121] Bauchy, M.; Laubie, H.; Abdolhosseini Qomi, M. J.; Hoover, C. G.; Ulm, F.-J.; Pellenq, R. J.M., Fracture toughness of calcium-silicate-hydrate from molecular dynamics simulations, J Non-Cryst Solids, 419, 58-64 (2015)
[122] Hou, D.; Ma, H.; Zhu, Y.; Li, Z., Calcium silicate hydrate from dry to saturated state: structure, dynamics and mechanical properties, Acta Mater, 67, 81-94 (2014)
[123] Tavakoli, D.; Tarighat, A.; Beheshtian, J., Nanoscale investigation of the influence of water on the elastic properties of C-S-H gel by molecular simulation, Proc Inst Mech Eng Part L J Mater Des Appl, 233, 1295-1306 (2019)
[124] Tu, Y.; Yu, Q.; Wen, R.; Shi, P.; Yuan, L.; Ji, Y., Molecular dynamics simulation of coupled water and ion adsorption in the nano-pores of a realistic calcium-silicate-hydrate gel, Constr Build Mater, 299, Article 123961 pp. (2021)
[125] Pellenq, R. J.M.; Kushima, A.; Shahsavari, R.; Van Vliet, K. J.; Buehler, M. J.; Yip, S., A realistic molecular model of cement hydrates, Proc Natl Acad Sci, 106, 16102-16107 (2009)
[126] Xu, J.; Niu, X.; Ma, Q.; Han, Q., Mechanical properties and damage analysis of rubber cement mortar mixed with ceramic waste aggregate based on acoustic emission monitoring technology, Constr Build Mater, 309, Article 125084 pp. (2021)
[127] Richardson, IG., The calcium silicate hydrates, Cem Concr Res, 38, 137-158 (2008)
[128] Xu, W.; Zeng, Q.; Yu, A., Prediction of the overall Young’s moduli of clay-based polymer nanocomposites, J Compos Mater, 49, 3459-3469 (2015)
[129] Xu, W.; Zeng, Q.; Yu, A., Young’s modulus of effective clay clusters in polymer nanocomposites, Polymer, 53, 3735-3740 (2012)
[130] Krishna, S.; Patel, CM., Computational and experimental study of mechanical properties of Nylon 6 nanocomposites reinforced with nanomilled cellulose, Mech Mater, 143, Article 103318 pp. (2020)
[131] Ikeshima, D.; Nishimori, F.; Yonezu, A., Deformation modeling of polyamide 6 and the effect of water content using molecular dynamics simulation, J Polym Res, 26, 151 (2019)
[132] Kumar, U.; Sharma, S.; Rathi, R.; Kapur, S.; Upadhyay, D., Molecular dynamics simulation of Nylon/CNT composites, Mater Today Proc, 5, 27710-27717 (2018)
[133] Krishna, S.; Patel, CM., Experimental and computational study of mechanical properties of nylon 6 nanocomposites reinforced with coconut shell nanoparticles, Mater Today Commun, 24, Article 100981 pp. (2020)
[134] Büyüköztürk, O.; Buehler, M. J.; Lau, D.; Tuakta, C., Structural solution using molecular dynamics: fundamentals and a case study of epoxy-silica interface, Int J Solids Struct, 48, 2131-2140 (2011)
[135] Zhou, T.; Zhao, F.; Zhou, H.; Zhang, F.; Wang, P., Atomistic simulation and continuum modeling of the dynamic tensile fracture and damage evolution of solid single crystalline Al with He bubble, Int J Mech Sci, 234, Article 107681 pp. (2022)
[136] Asproulis, N.; Drikakis, D., An artificial neural network-based multiscale method for hybrid atomistic-continuum simulations, Microfluid Nanofluid, 15, 559-574 (2013)
[137] Keeler, J. S.; Blake, T. D.; Lockerby, D. A.; Sprittles, J., E.Putting the micro into the macro: a molecularly augmented hydrodynamic model of dynamic wetting applied to flow instabilities during forced dewetting, Journal of Fluid Mechanics, 953, A17 (2022) · Zbl 07634448
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.