×

Two-step feedback preparation of entanglement for qubit systems with time delay. (English) Zbl 1461.93159

Summary: Quantum entanglement plays a fundamental role in quantum computation and quantum communication. Feedback control has been widely used in stochastic quantum systems to generate given entangled states since it has good robustness, where the time required to compute filter states and conduct filter-based control usually cannot be ignored in many practical applications. This paper designed two control strategies based on the Lyapunov method to prepare a class of entangled states for qubit systems with a constant delay time. The first one is bang-bang-like control strategy, which has a simple form with switching between a constant value and zero, the stability of which is proved. Another control strategy is switching Lyapunov control, where a constant delay time is introduced in the filter-based feedback control law to compensate for the computation time. Numerical results on a two-qubit system illustrate the effectiveness of these two proposed control strategies.

MSC:

93B52 Feedback control
93E03 Stochastic systems in control theory (general)
93C43 Delay control/observation systems
81Q93 Quantum control
81P40 Quantum coherence, entanglement, quantum correlations

References:

[1] Asavanant, W.; Shiozawa, Y.; Yokoyama, S.; Charoensombutamon, B.; Emura, H.; Alexander, R. N., Generation of time-domain-multiplexed two-dimensional cluster state, Science, 366, 6463, 373-376 (2019)
[2] Bennett, C. H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W. K., Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Physical Review Letters, 70, 13, 1895-1899 (1993) · Zbl 1051.81505
[3] Bose, S.; Vedral, V.; Knight, P. L., Multiparticle generalization of entanglement swapping, Physical Review A, 57, 2, 822-829 (1998)
[4] Dynkin, E. B., Markov processes, 77-104 (1965), Springer: Springer Berlin, Heidelberg · Zbl 0132.37901
[5] Einstein, A.; Podolsky, B.; Rosen, N., Can quantum-mechanical decription of physical reality be considered complete?, Physical Review, 47, 777-780 (1935) · Zbl 0012.04201
[6] Ekert, A. K., Quantum cryptography based on Bell’s theorem, Physical Review Letters, 67, 6, 661-663 (1991) · Zbl 0990.94509
[7] Gao, Q.; Dong, D.; Petersen, I. R., Fault tolerant quantum filtering and fault detection for quantum systems, Automatica, 71, 125-134 (2016) · Zbl 1343.93086
[8] Ge, S. S.; Vu, T. L.; Lee, T. H., Quantum measurement-based feedback control: a nonsmooth time delay control approach, SIAM Journal on Control and Optimization, 50, 2, 845-863 (2012) · Zbl 1250.81018
[9] Gikhman, I. I.; Skorohod, A. V., Introduction to the theory of random processes (1996), Dover
[10] Kashima, K., & Nishio, K. (2007). Global stabilization of two-dimensional quantum spin systems despite estimation delay. In Proceedings of the 46th IEEE conference on decision and control.
[11] Kashima, K.; Yamamoto, N., Control of quantum systems despite feedback delay, IEEE Transactions on Automatic Control, 54, 4, 876-881 (2009) · Zbl 1367.81014
[12] Kushner, H. J., Stochastic stability and control (1967), Academic Press · Zbl 0244.93065
[13] Liao, S. K.; Cai, W. Q.; Liu, W. Y.; Zhang, L.; Li, Y.; Ren, J. G., Satellite-to-ground quantum key distribution, Nature, 549, 7670, 43-47 (2017)
[14] Liu, Y., Dong, D., Petersen, I. R., Kuang, S., & Yonezawa, H. (2019). Feedback preparation of Bell states for two-qubit systems with time delay. In Proceedings of the 2019 American control conference. (pp. 5008-5013).
[15] Liu, Y.; Kuang, S.; Cong, S., Lyapunov-based feedback preparation of GHZ entanglement of \(N\)-qubit systems, IEEE Transactions on Cybernetics, 47, 11, 3827-3839 (2017)
[16] Mirrahimi, M.; van Handel, R., Stabilizing feedback controls for quantum systems, SIAM Journal on Control and Optimization, 46, 2, 445-467 (2007) · Zbl 1136.81342
[17] Nielsen, M. A.; Chuang, I., Quantum computation and quantum information (2010), Cambridge University Press · Zbl 1288.81001
[18] Nielsen, A. E.B.; Hopkins, A. S.; Mabuchi, H., Quantum filter reduction for measurement-feedback control via unsupervised manifold learning, New Journal of Physics, 11, Article 105043 pp. (2009)
[19] Raussendorf, R.; Briegel, H. J., A one-way quantum computer, Physical Review Letters, 86, 22, 5188-5191 (2001)
[20] Riste, D.; Dukalski, M.; Watson, C. A.; De Lange, G.; Tiggelman, M. J.; Blanter, Y. M., Deterministic entanglement of superconducting qubits by parity measurement and feedback, Nature, 502, 7471, 350-354 (2013)
[21] Shankar, S.; Hatridge, M.; Leghtas, Z.; Sliwa, K. M.; Narla, A.; Vool, U., Autonomously stabilized entanglement between two superconducting quantum bits, Nature, 504, 7480, 419-422 (2013)
[22] Steck, D. A.; Jacobs, K.; Mabuchi, H.; Habib, S.; Bhattacharya, T., Feedback cooling of atomic motion in cavity QED, Physical Review A, 74, Article 012322 pp. (2006)
[23] Stockton, J. K.; van Handel, R.; Mabuchi, H., Deterministic Dicke-state preparation with continuous measurement and control, Physical Review A, 70, 2, Article 022106 pp. (2004)
[24] van Handel, R.; Stockton, J. K.; Mabuchi, H., Modelling and feedback control design for quantum state preparation, Journal of Optics B: Quantum and Semiclassical Optics, 7, 10, S179 (2005)
[25] Vu, T. L.; Ge, S. S.; Hang, C. C., Real-time deterministic generation of maximally entangled two-qubit and three-qubit states via bang-bang control, Physical Review A, 85, Article 012332 pp. (2012)
[26] Wang, S.; Gao, Q.; Dong, D., Robust \(H^\infty\) controller design for a class of linear quantum systems with time delay, International Journal of Robust and Nonlinear Control, 27, 3, 380-392 (2017) · Zbl 1355.93065
[27] Wang, S.; James, M. R., Quantum feedback control of linear stochastic systems with feedback-loop time delays, Automatica, 52, 277-282 (2015) · Zbl 1309.93150
[28] Wineland, D. J.; Bollinger, J. J.; Itano, W. M.; Heinzen, D. J., Squeezed atomic states and projection noise in spectroscopy, Physical Review A, 50, 1, 67-88 (1994)
[29] Wootters, W. K., Entanglement of formation of an arbitrary state of two qubits, Physical Review Letters, 80, 10, 2245-2248 (1998) · Zbl 1368.81047
[30] Yamamoto, N.; Tsumura, K.; Hara, S., Feedback control of quantum entanglement in a two-spin system, Automatica, 43, 6, 981-992 (2007) · Zbl 1282.93130
[31] Young, K. C.; Whaley, K. B., Qubits as spectrometers of dephasing noise, Physical Review A, 86, 1, Article 012314 pp. (2012)
[32] Zhou, J.; Kuang, S., Feedback preparation of maximally entangled states of two-qubit systems, IET Control Theory & Applications, 10, 3, 339-345 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.