×

Entanglement of multipartite fermionic coherent states for pseudo-Hermitian Hamiltonians. (English. Russian original) Zbl 1401.81016

Theor. Math. Phys. 196, No. 1, 1028-1042 (2018); translation from Teor. Mat. Fiz. 196, No. 1, 99-116 (2018).
Summary: We study the entanglement of multiqubit fermionic pseudo-Hermitian coherent states (FPHCSs) described by anticommutative Grassmann numbers. We introduce pseudo-Hermitian versions of well-known maximally entangled pure states, such as Bell, GHZ, Werner, and biseparable states, by integrating over the tensor products of FPHCSs with a suitable choice of Grassmannian weight functions. As an illustration, we apply the proposed method to the tensor product of two- and three-qubit pseudo-Hermitian systems. For a quantitative characteristic of entanglement of such states, we use a measure of entanglement determined by the corresponding concurrence function and average entropy.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81R30 Coherent states
81Q12 Nonselfadjoint operator theory in quantum theory including creation and destruction operators

References:

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge (2000). · Zbl 1049.81015
[2] Gühne, O.; Tóth, G., Entanglement detection, Phys. Rep., 474, 1-75, (2009) · doi:10.1016/j.physrep.2009.02.004
[3] Enk, S. J.; Lütkenhaus, N.; Kimble, H. J., Experimental procedures for entanglement verification, Phys. Rev. A, 75, 052318, (2007) · doi:10.1103/PhysRevA.75.052318
[4] Horodecki, P., Measuring quantum entanglement without prior state reconstruction, Phys. Rev. Lett., 90, 167901, (2003) · Zbl 1267.81037 · doi:10.1103/PhysRevLett.90.167901
[5] Horodecki, P.; Ekert, A., Method for direct detection of quantum entanglement, Phys. Rev. Lett., 89, 127902, (2002) · Zbl 1267.81038 · doi:10.1103/PhysRevLett.89.127902
[6] Walborn, S. P.; Souto Ribeiro, P. H.; Davidovich, L.; Mintert, F.; Buchleitner, A., Experimental determination of entanglement with a single measurement, Nature, 440, 1022-1024, (2006) · doi:10.1038/nature04627
[7] Schmid, C.; Kiesel, N.; Wieczorek, W.; Weinfurter, H., Experimental direct observation of mixed state entanglement, Phys. Rev. Lett., 101, 260505, (2008) · doi:10.1103/PhysRevLett.101.260505
[8] Vidal, G., Entanglement monotones, J. Modern Opt., 47, 355-376, (2000) · doi:10.1080/09500340008244048
[9] J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge Univ. Press, Cambridge (1987). · Zbl 1239.81001
[10] Lloyd, S.; Braunstein, S. L., Quantum computation over continuous variables, Phys. Rev. Lett., 82, 1784-1787, (1999) · Zbl 0947.81015 · doi:10.1103/PhysRevLett.82.1784
[11] Enk, S. J., Decoherence of multidimensional entangled coherent states, Phys. Rev. A, 72, 022308, (2005) · Zbl 1171.81443 · doi:10.1103/PhysRevA.72.022308
[12] Enk, S. J.; Hirota, O., Entangled coherent states: teleportation and decoherence, Phys. Rev. A, 64, 022313, (2001) · doi:10.1103/PhysRevA.64.022313
[13] Fu, H.; Wang, X.; Solomon, A. I., Maximal entanglement of nonorthogonal states: classification, Phys. Lett. A, 291, 73-76, (2001) · Zbl 0977.81036 · doi:10.1016/S0375-9601(01)00720-4
[14] Wang, X.; Sanders, B. C., Multipartite entangled coherent states, Phys. Rev. A, 65, 012303, (2002) · doi:10.1103/PhysRevA.65.012303
[15] Wang, X., Bipartite entangled non-orthogonal states, J. Phys. A: Math. Gen., 35, 165-174, (2002) · Zbl 1007.81018 · doi:10.1088/0305-4470/35/1/313
[16] Wang, X.; Sanders, B. C.; Pan, S. H., Entangled coherent states for systems with SU(2) and SU(1, 1) symmetries, J. Phys. A: Math. Gen., 33, 7451-7467, (2000) · Zbl 0962.81026 · doi:10.1088/0305-4470/33/41/312
[17] Wang, X., Entanglement in the quantum Heisenberg XY model, Phys. Rev. A, 64, 012313, (2001) · doi:10.1103/PhysRevA.64.012313
[18] Borsten, L.; Dahanayake, D.; Duff, M. J.; Rubens, W., Superqubits, Phys. Rev. D, 81, 105023, (2010) · doi:10.1103/PhysRevD.81.105023
[19] Khanna, F. C.; Malbouisson, J. M. C.; Santana, A. E.; Santos, E. S., Maximum entanglement in squeezed boson and fermion states, Phys. Rev. A, 76, 022109, (2007) · doi:10.1103/PhysRevA.76.022109
[20] Najarbashi, G.; Maleki, Y., Entanglement of Grassmannian coherent states for multi-partite n-level systems, SIGMA, 7, 011, (2011) · Zbl 1217.81013
[21] Najarbashi, G.; Maleki, Y., Maximal entanglement of two-qubit states constructed by linearly independent coherent states, Internat. J. Theor. Phys., 50, 2601-2608, (2011) · Zbl 1227.81083 · doi:10.1007/s10773-011-0755-5
[22] Maleki, Y., Para-grassmannian coherent and squeezed states for pseudo-Hermitian q-oscillator and their entanglement, SIGMA, 7, 084, (2011) · Zbl 1250.81055
[23] Majid, S., Random walk and the heat equation on superspace and anyspace, J. Math. Phys., 35, 3753-3760, (1994) · Zbl 0808.60090 · doi:10.1063/1.530868
[24] Cabra, D. C.; Moreno, E. F.; Tanasă, A., Para-Grassmann variables and coherent states, SIGMA, 2, 087, (2006) · Zbl 1133.81026
[25] Cherbal, O.; Drir, M.; Maamache, M.; Trifonov, D. A., Fermionic coherent states for pseudo-Hermitian two-level systems, J. Phys. A: Math. Theor., 40, 1835-1844, (2007) · Zbl 1113.81073 · doi:10.1088/1751-8113/40/8/010
[26] Najarbashi, G.; Fasihi, M. A.; Fakhri, H., Generalized grassmannian coherent states for pseudo-Hermitian n-level systems, J. Phys. A: Math. Theor., 43, 325301, (2010) · Zbl 1194.81128 · doi:10.1088/1751-8113/43/32/325301
[27] Scholtz, F. G.; Geyer, H. B.; Hahne, F. J. W., Quasi-Hermitian operators in quantum mechanics and the variational principle, Ann. Phys., 213, 74-101, (1992) · Zbl 0749.47041 · doi:10.1016/0003-4916(92)90284-S
[28] Bender, C. M.; Boettcher, S., Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett., 80, 5243-5246, (1998) · Zbl 0947.81018 · doi:10.1103/PhysRevLett.80.5243
[29] Bender, C. M.; Boettcher, S.; Meisenger, P. N., PT-symmetric quantum mechanics, J. Math. Phys., 40, 2201-2229, (1999) · Zbl 1057.81512 · doi:10.1063/1.532860
[30] Bender, C. M.; Dunne, G. V., Large-order perturbation theory for a non-Hermitian PT-symmetric Hamiltonian, J. Math. Phys., 40, 4616-4621, (1999) · Zbl 0969.81019 · doi:10.1063/1.532991
[31] Cannata, F.; Junker, G.; Trost, J., Schrödinger operators with complex potential but real spectrum, Phys. Lett. A, 246, 219-226, (1998) · Zbl 0941.81028 · doi:10.1016/S0375-9601(98)00517-9
[32] Znojil, M.; Cannata, F.; Bagchi, B.; Roychoudhury, R., Supersymmetry without hermiticity within PT symmetric quantum mechanics, Phys. Lett. B, 483, 284-289, (2000) · Zbl 1031.81523 · doi:10.1016/S0370-2693(00)00569-4
[33] Mostafazadeh, A., Pseudo-hermiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys., 43, 205-214, (2002) · Zbl 1059.81070 · doi:10.1063/1.1418246
[34] Mostafazadeh, A., Pseudo-hermiticity versus PT-symmetry: II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum, J. Math. Phys., 43, 2814-2816, (2002) · Zbl 1060.81022 · doi:10.1063/1.1461427
[35] Mostafazadeh, A., Pseudo-Hermitian representation of quantum mechanics, Intenat. J. Geom. Meth. Modern Phys., 7, 1191-1306, (2010) · Zbl 1208.81095 · doi:10.1142/S0219887810004816
[36] Hatano, N.; Nelson, D. R., Localization transitions in non-Hermitian quantum mechanics, Phys. Rev. Lett., 77, 570-573, (1996) · doi:10.1103/PhysRevLett.77.570
[37] Hatano, N.; Nelson, D. R., Vortex pinning and non-Hermitian quantum mechanics, Phys. Rev. B, 56, 8651-8673, (1997) · doi:10.1103/PhysRevB.56.8651
[38] Bennett, C. H.; Brassard, G.; Crepeau, C.; Jozsa, R.; Peres, A.; Wooters, W. K., Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 70, 1895-1899, (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[39] D. Bouwmeester, A. K. Ekert, and A. Zeilinger, eds., The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation, Springer, 2001. · Zbl 1008.81504
[40] Pati, A. K., Minimum classical bit for remote preparation and measurement of a qubit, Phys. Rev. A, 63, 014302, (2001) · doi:10.1103/PhysRevA.63.014302
[41] A. V. Sergienko, ed., Quantum Communications and Cryptography, CRC Press Taylor and Francis Group, Boca Raton, Fla. (2006). · Zbl 1115.81006
[42] Anicich, P. G. O.; Grinberg, H., Grassmann coherent states for spin systems, J. Molec. Struct., 621, 9-18, (2003) · doi:10.1016/S0166-1280(02)00528-6
[43] Abe, S., Adiabatic holonomy and evolution of fermionic coherent state, Phys. Rev. D, 39, 2327-2331, (1989) · doi:10.1103/PhysRevD.39.2327
[44] Ohnuki, J.; Kashiwa, T., Coherent states of Fermi operators and the path integral, Prog. Theor. Phys., 60, 548-564, (1978) · Zbl 1098.81655 · doi:10.1143/PTP.60.548
[45] F. A. Berezin, The Method of Second Quantization [in Russian], Fizmatlit, Moscow (1965); English transl., Acad. Press, New York (1966). · Zbl 0151.44001
[46] Cahill, K. E.; Glauber, R. J., Density operators for fermions, Phys. Rev. A, 59, 1538-1555, (1999) · doi:10.1103/PhysRevA.59.1538
[47] Acin, A.; Bruβ, D.; Lewenstein, M.; Sanpera, A., Classification of mixed three-qubit states, Phys. Rev. Lett., 87, 040401, (2001) · doi:10.1103/PhysRevLett.87.040401
[48] Pati, A. K., Entanglement in non-Hermitian quantum theory, Pramana, 73, 485-498, (2010) · doi:10.1007/s12043-009-0101-0
[49] Wootters, W. K., Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett., 80, 2245-2248, (1998) · Zbl 1368.81047 · doi:10.1103/PhysRevLett.80.2245
[50] Hill, S.; Wootters, W. K., Entanglement of a pair of quantum bits, Phys. Rev. Lett., 78, 5022-5025, (1997) · doi:10.1103/PhysRevLett.78.5022
[51] Lamb, W. E.; Schlicher, R. R.; Scully, M. O., Matter-field interaction in atomic physics and quantum optics, Phys. Rev. A, 36, 2763-2772, (1987) · doi:10.1103/PhysRevA.36.2763
[52] Garrison, J. C.; Wright, E. M., Complex geometrical phases for dissipative systems, Phys. Lett. A, 128, 177-181, (1988) · doi:10.1016/0375-9601(88)90905-X
[53] Rajagopal, A. K.; Rendell, R. W., Nonextensive statistical mechanics: implications to quantum information, Europhys. News, 36, 221-224, (2005) · doi:10.1051/epn:2005613
[54] Plenio, M. B.; Vedral, V., Teleportation, entanglement and thermodynamics in the quantum world, Contemp. Phys., 39, 431-446, (2001) · doi:10.1080/001075198181766
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.