×

Networked robust stability for LTV systems with simultaneous uncertainties in plant, controller, and communication channels. (English) Zbl 1461.93398

Summary: In this paper, we study the robust stability of a networked control system (NCS) under the framework of infinite-dimensional discrete-time linear time-varying (LTV) systems. The NCS consists of a pair of uncertain plant and controller, as well as an uncertain bilateral communication channel in between. The uncertainties in the plant and controller are measured by the gap metric. The communication channel between the plant and controller is described by a cascade of two-port networks whose transmission matrices are subject to norm-bounded additive uncertainties. Such an uncertain two-port network can model distortions and interferences occurring during control and measurement signal transmissions. The causality of the LTV subsystems is characterized by using nest algebras. A necessary and sufficient condition for the robust stability of the NCS, with the causality of all system components explicitly considered, is established in the form of an arcsine inequality which generalizes a similar result for linear time-invariant NCSs.

MSC:

93D09 Robust stability
93B70 Networked control
93C35 Multivariable systems, multidimensional control systems
93C55 Discrete-time control/observation systems
93C05 Linear systems in control theory
Full Text: DOI

References:

[1] F. Alagoz and G. Gur, Energy efficiency and satellite networking: A holistic overview, Proc. IEEE, 99 (2011), pp. 1954-1979.
[2] A. Ajithv Kumar S., K. Ovsthus, and L. M. Kristensen, An industrial perspective on wireless sensor networks-A survey of requirements, protocols, and challenges, IEEE Commun. Surveys Tutor., 16 (2014), pp. 1391-1412.
[3] M. S. Akram and M. Cantoni, Gap metrics for linear time-varying systems, SIAM J. Control Optim., 56 (2018), pp. 782-800. · Zbl 06850891
[4] M. Cantoni, U. T. Jonsson, and S. Z. Khong, Robust stability analysis for feedback interconnections of time-varying linear systems, SIAM J. Control Optim., 51 (2013), pp. 353-379. · Zbl 1262.93017
[5] M. Cantoni and G. Vinnicombe, Linear feedback systems and the graph topology, IEEE Trans. Automat. Control, 47 (2002), pp. 710-719. · Zbl 1364.93320
[6] J. Choma, Electrical Networks: Theory and Analysis, Wiley-Interscience, New York, 1985.
[7] L. O. Chua, C. A. Desoer, and E. S. Kuh, Linear and Nonlinear Circuits, McGraw-Hill, New York, 1987. · Zbl 0631.94017
[8] C. Davis and W. M. Kahan, The rotation of eigenvectors by a perturbation, 3, SIAM J. Numer. Anal., 7 (1970), pp. 1-46. · Zbl 0198.47201
[9] K. R. Davidson, Nest Algebras, Research Notes in Math. 191, Longman Sci. & Tech., Wiley, New York, 1988. · Zbl 0669.47024
[10] S. M. Djouadi and Y. Li, On robust stabilization in the gap metric for LTV systems, in Proceedings of the 45th IEEE Conference on Decision and Control (CDC), 2006, pp. 578-583.
[11] S. M. Djouadi, On robustness in the gap metric and coprime factor uncertainty for LTV systems, Systems Control Lett., 80 (2015), pp. 16-22. · Zbl 1330.93204
[12] W. Dale and M. C. Smith, Stabilizability and existence of system representations for discrete-time time-varying systems, SIAM J. Control Optim., 31 (1993), pp. 1538-1557. · Zbl 0793.93084
[13] A. Feintuch, The gap metric for time-varying systems, Systems Control Lett., 16 (1991), pp. 277-279. · Zbl 0728.93027
[14] A. Feintuch, Robustness for time-varying systems, Math. Control Signals Systems, 6 (1993), pp. 247-263. · Zbl 0797.93031
[15] A. Feintuch, Strong graph representations for linear time-varying systems, Linear Algebra Appl., 203-204 (1994), pp. 385-399. · Zbl 0801.93047
[16] A. Feintuch, Robust Control Theory in Hilbert Space. Springer, New York, 1998. · Zbl 0892.93005
[17] A. Feintuch and A. Markus, The structured norm of a Hilbert space operator with respect to a given algebra of operators, Oper. Theory Interpolat., 115 (2000), pp. 163-183. · Zbl 0952.93023
[18] A. Feintuch and B. A. Francis, Uniformly optimal control of linear feedback systems, Automatica J. IFAC, 21 (1985), pp. 563-574. · Zbl 0574.93032
[19] C. Foias, T. T. Georgiou, and M. C. Smith, Robust stability of feedback systems: A geometric approach using the gap metric, SIAM J. Control Optim., 31 (1993), pp. 1518-1537. · Zbl 0793.93094
[20] G. Gu and L. Qiu, A two-port approach to networked feedback stabilization, in Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), 2011, pp. 2387-2392.
[21] T. T. Georgiou, On the computation of the gap metric, Systems Control Lett., 11 (1988), pp. 253-257. · Zbl 0669.93039
[22] T. T. Georgiou and M. C. Smith, Optimal robustness in the gap metric, IEEE Trans. Automat. Control, 35 (1990), pp. 673-686. · Zbl 0800.93289
[23] G. Gu, Model reduction with relative/multiplicative error bounds and relations to controller reduction, IEEE Trans. Automat. Control, 40 (1995), pp. 1478-1485. · Zbl 0837.93006
[24] G. Gu and L. Qiu, Connection of multiplicative/relative perturbation in coprime factors and gap metric uncertainty, Automatica J. IFAC, 34 (1998), pp. 603-607. · Zbl 0968.93059
[25] K. Glover and D. McFarlane, Robust stabilization of normalized coprime factor plant descriptions with \(H_{\infty}\)-bounded uncertainty, IEEE Trans. Automat. Control, 34 (1989), pp. 821-830. · Zbl 0698.93063
[26] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966. · Zbl 0148.12601
[27] M. A. Krasnosel’skii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii, and V. Ya. Stetsenko, Approximate Solution of Operator Equations, Wolters-Noordhoff, Groningen, the Netherlands, 1972. · Zbl 0231.41024
[28] H. Kimura, Chain-Scattering Approach to \(H_{\infty}\) Control, Springer, New York, 1996.
[29] S. Z. Khong and M. Cantoni, Gap metrics for time-varying linear systems in a continuous-time setting, Systems Control Lett., 70 (2014), pp. 118-126. · Zbl 1290.93091
[30] E. C. Lance. Some properties of nest algebras, Proc. London Math. Soc., 19 (1969), pp. 45-68. · Zbl 0169.17502
[31] L. Liu and Y. F. Lu, Stability analysis for time-varying systems via quadratic constraints, Systems Control Lett., 60 (2011), pp. 832-839. · Zbl 1226.93113
[32] L. Qiu and E. J. Davison, Pointwise gap metrics on transfer matrices, IEEE Trans. Automat. Control, 37 (1992), pp. 741-758. · Zbl 0755.93067
[33] L. Qiu and E. J. Davison, Feedback stability under simultaneous gap metric uncertainties in plant and controller, Systems Control Lett., 18 (1992), pp. 9-22. · Zbl 0743.93083
[34] L. Qiu, Y. Zhang, and C.-K. Li, Unitarily invariant metrics on the Grassmann space, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 507-531. · Zbl 1099.15024
[35] G. Vinnicombe, Frequency domain uncertainty and the graph topology, IEEE Trans. Automat. Control, 38 (1993), pp. 1371-1383. · Zbl 0787.93076
[36] G. Vinnicombe, Uncertainty and Feedback: \(H_{\infty}\) Loop-Shaping and the \(\nu \)-Gap Metric, World Scientific, Singapore, 2000. · Zbl 0966.93005
[37] M. Vidyasagar, Control System Synthesis: A Factorization Approach, Morgan & Claypool Publishers, MIT Press, Cambridge, MA, 2011. · Zbl 0655.93001
[38] W. Zhang, M. S. Branicky, and S. M. Phillips, Stability of networked control systems, IEEE Control Syst. Mag., 21 (2001), pp. 84-99.
[39] D. Zhao, L. Qiu, and G. Gu, Stabilization of two-port networked systems with simultaneous uncertainties in plant, controller, and communication channels, IEEE Trans. Automat. Control, 65 (2020), pp. 1160-1175. · Zbl 1533.93630
[40] K. Zhou and J. C. Doyle, Essentials of Robust Control, Prentice Hall, Upper Saddle River, NJ, 1998. · Zbl 0890.93003
[41] G. Zames and A. K. El-Sakkary, Unstable systems and feedback: The gap metric, in Proceedings of the Allerton Conference, 1980, pp. 380-385.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.