×

On pro-\(p\) Cappitt groups with finite exponent. (English) Zbl 1537.20070

Let \(G\) be a group and let \(S(G)=\langle N \mid N < G, N \ntrianglelefteq G \rangle\) be the subgroup of \(G\) generated by all proper subgroups which are not normal in \(G\). It is clear that \(S(G)\) is a characteristic subgroup of \(G\) and \(G/S(G)\) is a Dedekind group. A group \(G\) is a Cappitt group if \( S(G) \not =G\) (see [D. Cappitt, J. Algebra 17, 310–316 (1971; Zbl 0232.20067)]). In the profinite version, a profinite Dedekind group will be a profinite group in which every closed subgroup is normal. A pro-\(p\) Cappitt group is a pro-\(p\) group \(G\) such that \(\widetilde{S}(G)=\overline{\langle N \mid N <_{c} G, N \ntrianglelefteq G \rangle} \not =G\).
In the paper under review, the authors prove Theorem A: Let \(G\) be a non-abelian pro-\(p\) Cappitt group. Then \(G'\) is a procyclic central subgroup. Moreover, if \(\mathrm{tor}(G) \leq_{c}, G\) then \(G\) has finite exponent. This result is a natural continuation of the main result of the first author (see [Quaest. Math. 44, No. 3, 307–311 (2021; Zbl 1475.20045)]). They also prove that pro-\(2\) Cappitt groups of exponent \(4\) are pro-\(2\) Dedekind groups.

MSC:

20E34 General structure theorems for groups
20E18 Limits, profinite groups

Software:

GAP

References:

[1] Cappitt, D., Generalized Dedekind groups, J. Algebra, 17, 310-316, 1971 · Zbl 0232.20067 · doi:10.1016/0021-8693(71)90013-5
[2] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.10.2, 2019
[3] Herfort, Wolfgang N., Compact torsion groups and finite exponent, Arch. Math., 33, 404-410, 1980 · Zbl 0445.22002 · doi:10.1007/BF01222776
[4] Herfort, Wolfgang N., An arithmetic property of profinite groups, Manuscr. Math., 37, 11-17, 1982 · Zbl 0497.20016 · doi:10.1007/BF01239941
[5] Kappe, Luise-Charlotte; Reboli, Denise M., On the structure of generalized Hamiltonian groups, Arch. Math., 75, 5, 328-337, 2000 · Zbl 0976.20026 · doi:10.1007/s000130050511
[6] Kargapolov, Mikhail I.; Merzljakov, Ju. I., Fundamentals of the Theory of Groups, 62, 1979, Springer · Zbl 0549.20001 · doi:10.1007/978-1-4612-9964-6
[7] Porto, Anderson L. P., Profinite Cappitt groups, Quaest. Math., 44, 3, 307-311, 2021 · Zbl 1475.20045 · doi:10.2989/16073606.2019.1690068
[8] Porto, Anderson L. P.; de Bessa, Vagner R., Profinite Dedekind groups, Far East J. Math. Sci., 126, 1, 89-97, 2020
[9] Ribes, Luis; Zalesskii, Pavel, Profinite groups, 40, 2010, Springer · Zbl 1197.20022 · doi:10.1007/978-3-642-01642-4
[10] Robinson, Derek J. S., A course in the Theory of Groups, 80, 1996, Springer · doi:10.1007/978-1-4419-8594-1
[11] Rotman, Joseph J., An introduction to the theory of Groups, 148, 1995, Springer · Zbl 0810.20001 · doi:10.1007/978-1-4612-4176-8
[12] Wilson, John S., Profinite Groups, 1998, Clarendon Press · Zbl 0909.20001 · doi:10.1093/oso/9780198500827.001.0001
[13] Zelʼmanov, Efim I., On periodic compact groups, Isr. J. Math., 77, 1-2, 83-95, 1992 · Zbl 0786.22008 · doi:10.1007/BF02808012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.