×

Compactness and asymptotic behavior in nonautonomous linear parabolic equations with unbounded coefficients in \(\mathbb R^{d}\). (English) Zbl 1250.35035

Escher, Joachim (ed.) et al., Parabolic problems. The Herbert Amann Festschrift. Based on the conference on nonlinear parabolic problems held in celebration of Herbert Amann’s 70th birthday at the Banach Center in Bȩdlewo, Poland, May 10–16, 2009. Basel: Birkhäuser (ISBN 978-3-0348-0074-7/hbk; 978-3-0348-0075-4/ebook). Progress in Nonlinear Differential Equations and Their Applications 80, 447-461 (2011).
Summary: We consider a class of second-order linear nonautonomous parabolic equations in \(\mathbb R^{d}\) with time periodic unbounded coefficients. We give sufficient conditions for the evolution operator \(G(t, s)\) be compact in \(C_{b}(\mathbb R^{d})\) for \(t > s\), and describe the asymptotic behavior of \(G(t,s)f\) as \(t - s \rightarrow \infty \) in terms of a family of measures \(\mu_{s}, s \in\mathbb R\), solution of the associated Fokker-Planck equation.
For the entire collection see [Zbl 1220.35003].

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35D40 Viscosity solutions to PDEs
28C10 Set functions and measures on topological groups or semigroups, Haar measures, invariant measures
47D07 Markov semigroups and applications to diffusion processes
35K15 Initial value problems for second-order parabolic equations
35K90 Abstract parabolic equations

References:

[1] Da Prato, G.; Lunardi, A., Ornstein-Uhlenbeck operators with time periodic coefficients, J. Evol. Equ., 7, 4, 587-614 (2007) · Zbl 1155.47044 · doi:10.1007/s00028-007-0321-z
[2] Davies, EB, Heat Kernels and Spectral Theory (1989), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0699.35006 · doi:10.1017/CBO9780511566158
[3] Du, Y., Order structure and topological methods in nonlinear partial differential equations, Maximum principles and applications (2006), Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ · Zbl 1202.35043
[4] Dudley, RM, Real Analysis and Probability, Cambridge studies in advanced mathematics (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 1023.60001
[5] A. Friedman, Partial differential equations of parabolic type. Prentice Hall, 1964. · Zbl 0144.34903
[6] Fuhrman, M., Bounded solutions for abstract time-periodic parabolic equations with nonconstant domains, Diff. Int. Eqns., 4, 3, 493-518 (1991) · Zbl 0729.34041
[7] Henry, D., Geometric theory of semilinear parabolic equations, Lect. Notes in Math (1981), New York: Springer-Verlag, New York · Zbl 0456.35001
[8] Kunze, M.; Lorenzi, L.; Lunardi, A., Nonautonomous Kolmogorov parabolic equations with unbounded coefficients, Trans. Amer. Math. Soc., 362, 1, 169-198 (2010) · Zbl 1184.35150 · doi:10.1090/S0002-9947-09-04738-2
[9] Ladyz’enskaya, OA; Solonnikov, VA; Ural’tseva, NN, Linear and Quasilinear Equations of Parabolic Type (1968), Rhode Island, Providence: Amer. Math. Soc., Rhode Island, Providence · Zbl 0174.15403
[10] Lorenzi, L.; Lunardi, A.; Zamboni, A., Asymptotic behavior in time periodic parabolic problems with unbounded coefficients, J. Diff. Eqns., 249, 3377-3418 (2010) · Zbl 1207.47038 · doi:10.1016/j.jde.2010.08.019
[11] Lunardi, A., Analytic semigroups and optimal regularity in parabolic problems (1995), Basel: Birkhäuser, Basel · Zbl 0816.35001
[12] Metafune, G.; Pallara, D.; Wacker, M., Feller semigroups in Rn, Semigroup Forum, 65, 2, 159-205 (2002) · Zbl 1014.35050 · doi:10.1007/s002330010129
[13] Metafune, G.; Pallara, D.; Wacker, M., Compactness properties of Feller semigroups, Studia Math., 153, 2, 179-206 (2002) · Zbl 1033.47030 · doi:10.4064/sm153-2-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.