×

Extensions of a class of similarity solutions of Fokker-Planck equation with time-dependent coefficients and fixed/moving boundaries. (English) Zbl 1314.82033

The authors investigate the Fokker-Planck equation (FPE). This equation describes many mathematical models of different phenomena and processes in physics – mainly Brownian motion, chemistry, biology, finance, etc. In the one-dimensional case it has the form: \[ (\ast ) \;\;\;\;\partial_t W \;= \;P W, \] where \(W\equiv W(x, t)\), \(P\) is a differential operator defined by \(P\equiv [-\partial_xD^{(1)}(x,t)+ \partial_{xx}D^{(2)}(x,t)]W(x, t)\), \(W (x, t)\) is the probability distribution function normalized by \(\int\limits_{\Omega }W (x, t)dx=1\), \(\Omega\) is some domain, \(t\geq 0\), \(D^{(1)}(x,t)\) is the drift coefficient, and \(D^{(2)}(x,t)\) is the diffusion coefficient. It is known that \(D^{(1)}(x,t)\) represents the external force acting on some particle, and \(D^{(2)}(x,t)\) describes the effect of fluctuation. The similarity solutions (SS) of the FPE would be of interest. These solutions are possible if the FPE is invariant under the scale transformation \(\overline{x}=\varepsilon^ax\), \(\overline{t}= \varepsilon^bt\) (\(\varepsilon >0\)), \(a,b\in\mathbb{R}\). Then the FPE reduces to the form \[ \rho_2(z)y^{\prime\prime }(z)+[2\rho_2^{\prime }(z)- \rho_1(z)+\alpha z]y^{\prime }(z)+ [\rho_2^{\prime\prime }(z)-\rho_1^{\prime }(z)+\alpha ]y(z)=0,\tag{\(**\)} \] where \(y^{\prime }\) is the derivative w.r.t. \(z\), \(z\equiv x/t^{\alpha }\), \(\alpha =a/b\) (\(a,b\neq 0\)), and \(W(x,t)= t^{\alpha c/a}y(z)\); here \(\rho_1 (z)\) and \(\rho_2 (z)\) are scale invariant functions of \(z\). For the considered problem, the authors take impenetrable boundaries. In this case, the probability density and the associated probability current density must vanish on the boundary. Thus the solution of (\(\ast\ast \)) takes the form \[ y(z)=\biggl( C^{\prime }+ C\int\limits_{z_0}^{z}\exp\left(-\int\limits_{s_0}^{s}f(r)dr\right) \rho_2^{-1}(s) ds \biggr)\exp\left(\int\limits_{z_0}^{z}f(r)dr\right)dr ,\tag{\(***\)} \] where \(f(r)\equiv [\rho_1(r)-\rho_2^{\prime }(r)-\alpha r]\rho_2^{-1}(r)\), \(\rho_2(r)\neq 0\), and \(C\), \(C^{\prime }\) are integration constants. Here there are two interesting cases for \(C\neq 0\) and \(C=0\). Further, set \(\rho_1= \lambda z-\mu \) and \(\rho_2=\sigma \), where \(\lambda ,\mu ,\sigma\in\mathbb{R}\). Then the authors discuss the problem for \(\lambda =\alpha \) and \(\lambda \neq \alpha \). It follows from the above stated cases \(C\neq 0\) and \(C=0\), that any two sets of \(\{\rho_1 (z), \rho_2 (z)\}\), and \(\{\tilde{\rho}_1 (z), \tilde{\rho}_2 (z)\}\) that give the same \(f(z)\) define equivalent FPEs as the probability distribution functions are exactly the same. Thus, a general method for obtaining exact solutions of FPEs is established.
Furthermore, it is shown that the class of exact solutions of the FPEs can be extended by exploiting certain properties of the general formula presented in the recent papers by C. L. Ho [J. Math. Phys. 54, No. 4, 041501, 8 p. (2013; Zbl 1292.82029); Ann. Phys. 326, No. 4, 797–807 (2011; Zbl 1213.81125)].
The FPEs related to deformed radial oscillator potential and exceptional Laguerre polynomials, and also to deformed Poschl-Teller potential and exceptional Jacobi polynomials are discussed as well.

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
35Q84 Fokker-Planck equations

References:

[1] Risken, H., The Fokker-Planck Equation (1996) · Zbl 0866.60071
[2] Lin, W.-T.; Ho, C.-L., Ann. Phys., 327, 386 (2012) · Zbl 1237.82035 · doi:10.1016/j.aop.2011.11.004
[3] Ho, C.-L., J. Math. Phys., 54, 041501 (2013) · Zbl 1292.82029 · doi:10.1063/1.4797473
[4] Gradshteyn, I. S.; Ryzhik, I. M.; Jeffrey, Alan; Zwillinger, Daniel, Table of Integrals, Series, and Products (2007) · Zbl 1208.65001
[5] Cooper, F.; Khare, A.; Sukhatme, U., Phys. Rep., 251, 267 (1995) · doi:10.1016/0370-1573(94)00080-M
[6] 6.D.Gómez-Ullate, N.Kamran, and R.Milson, J. Math. Anal. Appl.359, 352 (2009);10.1016/j.jmaa.2009.05.052D.Gómez-Ullate, N.Kamran, and R.Milson, J. Approx. Theor.162, 987 (2010).10.1016/j.jat.2009.11.002 · Zbl 1214.34079
[7] 7.C.Quesne, J. Phys. A41, 392001 (2008);10.1088/1751-8113/41/39/392001B.Bagchi, C.Quesne, and R.Roychoudhury, Pramana J. Phys.73, 337 (2009).10.1007/s12043-009-0126-4
[8] Quesne, C., SIGMA, 5, 084 (2009) · Zbl 1188.81071 · doi:10.3842/SIGMA.2009.084
[9] 9.S.Odake and R.Sasaki, Phys. Lett. B679, 414 (2009);10.1016/j.physletb.2009.08.004S.Odake and R.Sasaki, Phys. Lett. B684, 173 (2009);10.1016/j.physletb.2009.12.062S.Odake and R.Sasaki, J. Math. Phys.51, 053513 (2010).10.1063/1.3371248 · Zbl 1310.81059
[10] 10.C.-L.Ho, S.Odake, and R.Sasaki, SIGMA7, 107 (2011); e-print arXiv:0912.5447 [math-ph];10.3842/SIGMA.2011.107C.-L.Ho and R.Sasaki, ISRN Math. Phys.2012, Article ID 920475 (2012); e-print arXiv:1102.5669 [math-ph].10.5402/2012/920475 · Zbl 1252.33008
[11] Midya, B.; Roy, B., Phys. Lett. A, 373, 4117 (2009) · Zbl 1234.81072 · doi:10.1016/j.physleta.2009.09.030
[12] Ho, C.-L., Ann. Phys., 326, 797 (2011) · Zbl 1213.81125 · doi:10.1016/j.aop.2010.12.006
[13] Dutta, D.; Roy, P., J. Math. Phys., 51, 042101 (2010) · Zbl 1310.81076 · doi:10.1063/1.3339676
[14] Ho, C.-L., Prog. Theor. Phys., 126, 185 (2011) · Zbl 1232.81017 · doi:10.1143/PTP.126.185
[15] Grandati, Y., Ann. Phys., 326, 2074 (2011) · Zbl 1220.81089 · doi:10.1016/j.aop.2011.03.001
[16] Gómez-Ullate, D.; Kamran, N.; Milson, R., J. Math. Anal. Appl., 387, 410 (2012) · Zbl 1232.33013 · doi:10.1016/j.jmaa.2011.09.014
[17] Odake, S.; Sasaki, R., Phys. Lett. B, 702, 164 (2011) · doi:10.1016/j.physletb.2011.06.075
[18] Takemura, K., J. Phys. A, 45, 085211 (2012) · Zbl 1247.34132 · doi:10.1088/1751-8113/45/8/085211
[19] 19.C.Quesne, Mod. Phys. Lett. A26, 1843 (2011);10.1142/S0217732311036383C.Quesne, Int. J. Mod. Phys. A26, 5337 (2011).10.1142/S0217751X11054942 · Zbl 1247.81155
[20] Quesne, C., Exceptional orthogonal polynomials and new exactly solvable potentials in quantum mechanics, Communication at the Symposium Symmetries in Science XV (2011) · Zbl 1274.81113
[21] Chou, C.-I.; Ho, C.-L., Int. J. Mod. Phys. B, 27, 1350135 (2013) · Zbl 1279.35086 · doi:10.1142/S021797921350135X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.