×

Mixed precision algorithms in numerical linear algebra. (English) Zbl 1512.65081

Summary: Today’s floating-point arithmetic landscape is broader than ever. While scientific computing has traditionally used single precision and double precision floating-point arithmetics, half precision is increasingly available in hardware and quadruple precision is supported in software. Lower precision arithmetic brings increased speed and reduced communication and energy costs, but it produces results of correspondingly low accuracy. Higher precisions are more expensive but can potentially provide great benefits, even if used sparingly. A variety of mixed precision algorithms have been developed that combine the superior performance of lower precisions with the better accuracy of higher precisions. Some of these algorithms aim to provide results of the same quality as algorithms running in a fixed precision but at a much lower cost; others use a little higher precision to improve the accuracy of an algorithm. This survey treats a broad range of mixed precision algorithms in numerical linear algebra, both direct and iterative, for problems including matrix multiplication, matrix factorization, linear systems, least squares, eigenvalue decomposition and singular value decomposition. We identify key algorithmic ideas, such as iterative refinement, adapting the precision to the data, and exploiting mixed precision block fused multiply-add operations. We also describe the possible performance benefits and explain what is known about the numerical stability of the algorithms. This survey should be useful to a wide community of researchers and practitioners who wish to develop or benefit from mixed precision numerical linear algebra algorithms.

MSC:

65G50 Roundoff error
65Y04 Numerical algorithms for computer arithmetic, etc.
65F05 Direct numerical methods for linear systems and matrix inversion
65F10 Iterative numerical methods for linear systems
Full Text: DOI

References:

[1] Abdelfattah, A., Anzt, H., Boman, E. G., Carson, E., Cojean, T., Dongarra, J., Fox, A., Gates, M., Higham, N. J., Li, X. S., Loe, J., Luszczek, P., Pranesh, S., Rajamanickam, S., Ribizel, T., Smith, B. F., Swirydowicz, K., Thomas, S., Tomov, S., Tsai, Y. M. and Yang, U. M. (2021a), A survey of numerical linear algebra methods utilizing mixed-precision arithmetic, Int. J. High Perform. Comput. Appl.35, 344-369.
[2] Abdelfattah, A., Costa, T., Dongarra, J., Gates, M., Haidar, A., Hammarling, S., Higham, N. J., Kurzak, J., Luszczek, P., Tomov, S. and Zounon, M. (2021b), A set of Batched Basic Linear Algebra Subprograms and LAPACK routines, ACM Trans. Math. Software47, 21. · Zbl 07467952
[3] Abdelfattah, A., Tomov, S. and Dongarra, J. (2019a), Fast batched matrix multiplication for small sizes using half-precision arithmetic on GPUs, in 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), IEEE, pp. 111-122.
[4] Abdelfattah, A., Tomov, S. and Dongarra, J. (2019b), Towards half-precision computation for complex matrices: A case study for mixed-precision solvers on GPUs, in 2019 IEEE/ACM 10th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA), IEEE, pp. 17-24.
[5] Abdelfattah, A., Tomov, S. and Dongarra, J. (2020), Investigating the benefit of FP16-enabled mixed-precision solvers for symmetric positive definite matrices using GPUs, in Computational Science - ICCS 2020 (Krzhizhanovskaya, V. V.et al.., eds), Vol. 12138 of Lecture Notes in Computer Science, Springer, pp. 237-250.
[6] Abdulah, S., Cao, Q., Pei, Y., Bosilca, G., Dongarra, J., Genton, M. G., Keyes, D. E., Ltaief, H. and Sun, Y. (2022), Accelerating geostatistical modeling and prediction with mixed-precision computations: A high-productivity approach with PaRSEC, IEEE Trans. Parallel Distrib. Syst.33, 964-976.
[7] Abdulah, S., Ltaief, H., Sun, Y., Genton, M. G. and Keyes, D. E. (2019), Geostatistical modeling and prediction using mixed precision tile Cholesky factorization, in 2019 IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC), IEEE, pp. 152-162.
[8] Agullo, E., Cappello, F., Di, S., Giraud, L., Liang, X. and Schenkels, N. (2020), Exploring variable accuracy storage through lossy compression techniques in numerical linear algebra: A first application to flexible GMRES. Research report RR-9342, Inria Bordeaux Sud-Ouest. Available at hal-02572910v2.
[9] Ahmad, K., Sundar, H. and Hall, M. (2019), Data-driven mixed precision sparse matrix vector multiplication for GPUs, ACM Trans. Archit. Code Optim.16, 51.
[10] Al-Mohy, A. H., Higham, N. J. and Liu, X. (2022), Arbitrary precision algorithms for computing the matrix cosine and its Fréchet derivative, SIAM J. Matrix Anal. Appl.43, 233-256. · Zbl 1508.65044
[11] Aliaga, J. I., Anzt, H., Grützmacher, T., Quintana-Ortí, E. S. and Tomás, A. E. (2020), Compressed basis GMRES on high performance GPUs. Available at arXiv:2009.12101.
[12] Alvermann, A., Basermann, A., Bungartz, H.-J., Carbogno, C., Ernst, D., Fehske, H., Futamura, Y., Galgon, M., Hager, G., Huber, S., Huckle, T., Ida, A., Imakura, A., Kawai, M., Köcher, S., Kreutzer, M., Kus, P., Lang, B., Lederer, H., Manin, V., Marek, A., Nakajima, K., Nemec, L., Reuter, K., Rippl, M., Röhrig-Zöllner, M., Sakurai, T., Scheffler, M., Scheurer, C., Shahzad, F., Brambila, D. Simoes, Thies, J. and Wellein, G. (2019), Benefits from using mixed precision computations in the ELPA-AEO and ESSEX-II eigensolver projects, Japan J. Indust. Appl. Math.36, 699-717. · Zbl 1418.65044
[13] Amestoy, P., Boiteau, O., Buttari, A., Gerest, M., Jézéquel, F., L’Excellent, J.Y. and Mary, T. (2021a), Mixed precision low rank approximations and their application to block low rank LU factorization. Available at hal-03251738.
[14] Amestoy, P., Buttari, A., Higham, N. J., L’Excellent, J.-Y., Mary, T. and Vieublé, B. (2021b), Five-precision GMRES-based iterative refinement. MIMS EPrint 2021.5, Manchester Institute for Mathematical Sciences, The University of Manchester, UK.
[15] Amestoy, P., Buttari, A., Higham, N. J., L’Excellent, J.-Y., Mary, T. and Vieublé, B. (2022), Combining sparse approximate factorizations with mixed precision iterative refinement. MIMS EPrint 2022.2, Manchester Institute for Mathematical Sciences, The University of Manchester, UK.
[16] Amestoy, P., Buttari, A., L’Excellent, J.-Y. and Mary, T. (2019), Performance and scalability of the block low-rank multifrontal factorization on multicore architectures, ACM Trans. Math. Software45, 2. · Zbl 1471.65025
[17] Amestoy, P., Duff, I. S., L’Excellent, J.-Y. and Koster, J. (2001), A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl.23, 15-41. · Zbl 0992.65018
[18] Anderson, E. (1991), Robust triangular solves for use in condition estimation. Technical report CS-91-142, Department of Computer Science, The University of Tennessee, Knoxville, TN, USA. LAPACK Working Note 36.
[19] (1966), American National Standard FORTRAN, American National Standards Institute, New York.
[20] Anzt, H., Dongarra, J. and Quintana-Ortí, E. S. (2015), Adaptive precision solvers for sparse linear systems, in Proceedings of the 3rd International Workshop on Energy Efficient Supercomputing (E2SC ’15), ACM Press, article 2.
[21] Anzt, H., Dongarra, J., Flegar, G., Higham, N. J. and Quintana-Ortí, E. S. (2019a), Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers, Concurrency Comput. Pract. Exper.31, e4460.
[22] Anzt, H., Flegar, G., Grützmacher, T. and Quintana-Ortí, E. S. (2019b), Toward a modular precision ecosystem for high-performance computing, Int. J. High Perform. Comput. Appl.33, 1069-1078.
[23] Appleyard, J. and Yokim, S. (2017), Programming tensor cores in CUDA 9. Available at https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/.
[24] Arioli, M. and Duff, I. S. (2009), Using FGMRES to obtain backward stability in mixed precision, Electron. Trans. Numer. Anal. 33, 31-44. · Zbl 1171.65018
[25] Arioli, M., Duff, I. S., Gratton, S. and Pralet, S. (2007), A note on GMRES preconditioned by a perturbed \(\text{LD}{L}^T\) decomposition with static pivoting, SIAM J. Sci. Comput. 29, 2024-2044. · Zbl 1161.65023
[26] (2018), ARM Architecture Reference Manual. ARMv8, for ARMv8-A Architecture Profile, ARM Limited, Cambridge, UK. Version dated 31 October 2018. Original release dated 30 April 2013.
[27] (2019), Arm A64 Instruction Set Architecture Armv8, for Armv8-A Architecture Profile, ARM Limited, Cambridge, UK.
[28] (2020), Arm Architecture Reference Manual. Armv8, for Armv8-A Architecture Profile, ARM Limited, Cambridge, UK. ARM DDI 0487F.b (ID040120).
[29] Baboulin, M., Buttari, A., Dongarra, J., Kurzak, J., Langou, J., Langou, J., Luszczek, P. and Tomov, S. (2009), Accelerating scientific computations with mixed precision algorithms, Comput. Phys. Comm.180, 2526-2533. · Zbl 1197.65240
[30] Bailey, D. H. (2021), MPFUN2020: A new thread-safe arbitrary precision package (full documentation). Available at https://www.davidhbailey.com/dhbpapers/mpfun2020.pdf.
[31] Bailey, D. H., Hida, Y., Li, X. S. and Thompson, B. (2002), ARPREC: An arbitrary precision computation package. Technical report LBNL-53651, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
[32] Bauer, P., Dueben, P. D., Hoefler, T., Quintino, T., Schulthess, T. C. and Wedi, N. P. (2021), The digital revolution of earth-system science, Nature Comput. Sci.1, 104-113.
[33] Bezanson, J., Edelman, A., Karpinski, S. and Shah, V. B. (2017), Julia: A fresh approach to numerical computing, SIAM Rev.59, 65-98. · Zbl 1356.68030
[34] Björck, Å. (1967), Iterative refinement of linear least squares solutions I, BIT7, 257-278. · Zbl 0159.20404
[35] Björck, Å. (1996), Numerical Methods for Least Squares Problems, SIAM. · Zbl 0847.65023
[36] Blanchard, P., Higham, N. J. and Mary, T. (2020a), A class of fast and accurate summation algorithms,, SIAM J. Sci. Comput.42, A1541-A1557. · Zbl 1471.65035
[37] Blanchard, P., Higham, N. J., Lopez, F., Mary, T. and Pranesh, S. (2020b), Mixed precision block fused multiply-add: Error analysis and application to GPU tensor cores, SIAM J. Sci. Comput.42, C124-C141. · Zbl 1452.65425
[38] Bouras, A. and Frayssé, V. (2005), Inexact matrix-vector products in Krylov methods for solving linear systems: A relaxation strategy, SIAM J. Matrix Anal. Appl.26, 660-678. · Zbl 1075.65041
[39] Bouras, A., Frayssé, V. and Giraud, L. (2000), A relaxation strategy for inner-outer linear solvers in domain decomposition methods. Technical report TR/PA/00/17, CERFACS, Toulouse, France.
[40] Brun, E., Defour, D., De Oliveira Castro, P., Iştoan, M., Mancusi, D., Petit, E. and Vaquet, A. (2021), A study of the effects and benefits of custom-precision mathematical libraries for HPC codes, IEEE Trans. Emerg. Topics Comput.9, 1467-1478.
[41] Buttari, A., Dongarra, J., Kurzak, J., Luszczek, P. and Tomov, S. (2008), Using mixed precision for sparse matrix computations to enhance the performance while achieving 64-bit accuracy, ACM Trans. Math. Software34, 17. · Zbl 1190.65117
[42] Buttari, A., Dongarra, J., Langou, J., Langou, J., Luszczek, P. and Kurzak, J. (2007), Mixed precision iterative refinement techniques for the solution of dense linear systems, Int. J. High Perform. Comput. Appl.21, 457-466. · Zbl 1197.65240
[43] Carson, E. and Higham, N. J. (2017), A new analysis of iterative refinement and its application to accurate solution of ill-conditioned sparse linear systems, SIAM J. Sci. Comput.39, A2834-A2856. · Zbl 1379.65019
[44] Carson, E. and Higham, N. J. (2018), Accelerating the solution of linear systems by iterative refinement in three precisions, SIAM J. Sci. Comput.40, A817-A847. · Zbl 1453.65067
[45] Carson, E., Gergelits, T. and Yamazaki, I. (2022a), Mixed precision \(s\) -step Lanczos and conjugate gradient algorithms, Numer. Linear Algebra Appl. 29, e2425. · Zbl 1538.65062
[46] Carson, E., Higham, N. J. and Pranesh, S. (2020), Three-precision GMRES-based iterative refinement for least squares problems, SIAM J. Sci. Comput.42, A4063-A4083. · Zbl 1461.65032
[47] Carson, E., Lund, K., Rozložník, M. and Thomas, S. (2022b), Block Gram-Schmidt algorithms and their stability properties, Linear Algebra Appl.638, 150-195. · Zbl 1490.65074
[48] Charara, A., Gates, M., Kurzak, J., Yarkhan, A. and Dongarra, J. (2020), SLATE developers’ guide. SLATE Working Note 11, Innovative Computing Laboratory, The University of Tennessee, Knoxville, TN, US.
[49] Choquette, J., Gandhi, W., Giroux, O., Stam, N. and Krashinsky, R. (2021), NVIDIA A100 tensor core GPU: Performance and innovation, IEEE Micro41, 29-35.
[50] Clark, M. A., Babich, R., Barros, K., Brower, R. C. and Rebbi, C. (2010), Solving lattice QCD systems of equations using mixed precision solvers on GPUs, Comput. Phys. Comm.181, 1517-1528. · Zbl 1215.81124
[51] Connolly, M. P. and Higham, N. J. (2022), Probabilistic rounding error analysis of Householder QR factorization. MIMS EPrint 2022.5, Manchester Institute for Mathematical Sciences, The University of Manchester, UK.
[52] Connolly, M. P., Higham, N. J. and Mary, T. (2021), Stochastic rounding and its probabilistic backward error analysis, SIAM J. Sci. Comput.43, A566-A585. · Zbl 1462.65050
[53] Courbariaux, M., Bengio, Y. and David, J.-P. (2015), Training deep neural networks with low precision multiplications. Available at arXiv:1412.7024v5.
[54] Croarken, M. G. (1985), The centralization of scientific computation in Britain 1925-1955. PhD thesis, University of Warwick, Coventry, UK.
[55] Croci, M., Fasi, M., Higham, N. J., Mary, T. and Mikaitis, M. (2022), Stochastic rounding: Implementation, error analysis, and applications, Roy. Soc. Open Sci. 9, 1-25.
[56] Davies, P. I., Higham, N. J. and Tisseur, F. (2001), Analysis of the Cholesky method with iterative refinement for solving the symmetric definite generalized eigenproblem, SIAM J. Matrix Anal. Appl.23, 472-493. · Zbl 1002.65044
[57] Davis, T. A. and Hu, Y. (2011), The University of Florida Sparse Matrix Collection, ACM Trans. Math. Software38, 1. · Zbl 1365.65123
[58] Dawson, A. and Düben, P. D. (2017), rpe v5: An emulator for reduced floating-point precision in large numerical simulations, Geosci. Model Dev. 10, 2221-2230.
[59] Dawson, A., Düben, P. D., Macleod, D. A. and Palmer, T. N. (2018), Reliable low precision simulations in land surface models, Climate Dynam.51, 2657-2666.
[60] Dean, J. (2020), The deep learning revolution and its implications for computer architecture and chip design, in 2020 IEEE International Solid-State Circuits Conference (ISSCC), IEEE, pp. 8-14.
[61] Demmel, J. and Hida, Y. (2004), Accurate and efficient floating point summation, SIAM J. Sci. Comput.25, 1214-1248. · Zbl 1061.65039
[62] Demmel, J. and Li, X. (1994), Faster numerical algorithms via exception handling, IEEE Trans. Comput.43, 983-992. · Zbl 1073.68502
[63] Demmel, J., Hida, Y., Riedy, E. J. and Li, X. S. (2009), Extra-precise iterative refinement for overdetermined least squares problems, ACM Trans. Math. Software35, 28.
[64] Dennis, J. E. Jr and Schnabel, R. B. (1983), Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall. Reprinted by SIAM, 1996. · Zbl 0579.65058
[65] Di, S. and Cappello, F. (2016), Fast error-bounded lossy HPC data compression with SZ, in 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS), IEEE, pp. 730-739.
[66] Diffenderfer, J., Osei-Kuffuor, D. and Menon, H. (2021), QDOT: Quantized dot product kernel for approximate high-performance computing. Available at arXiv:2105.00115. · Zbl 1492.65124
[67] Dongarra, J. J. (1980), Improving the accuracy of computed matrix eigenvalues. Preprint ANL-80-84, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA.
[68] Dongarra, J. J. (1982), Algorithm 589 SICEDR: A FORTRAN subroutine for improving the accuracy of computed matrix eigenvalues, ACM Trans. Math. Software8, 371-375. · Zbl 0523.65022
[69] Dongarra, J. J. (1983), Improving the accuracy of computed singular values, SIAM J. Sci. Statist. Comput.4, 712-719. · Zbl 0534.65012
[70] Dongarra, J. J. (2020), Report on the Fujitsu Fugaku system. Technical report ICL-UT-20-06, Innovative Computing Laboratory, The University of Tennessee, Knoxville, TN, USA.
[71] Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1979), LINPACK Users’ Guide, SIAM. · Zbl 0476.68025
[72] Dongarra, J. J., Moler, C. B. and Wilkinson, J. H. (1983), Improving the accuracy of computed eigenvalues and eigenvectors, SIAM J. Numer. Anal.20, 23-45. · Zbl 0523.65021
[73] Doucet, N., Ltaief, H., Gratadour, D. and Keyes, D. (2019), Mixed-precision tomographic reconstructor computations on hardware accelerators, in 2019 IEEE/ACM 9th Workshop on Irregular Applications: Architectures and Algorithms (IA3), IEEE, pp. 31-38.
[74] Düben, P. D., Subramanian, A., Dawson, A. and Palmer, T. N. (2017), A study of reduced numerical precision to make superparameterization more competitive using a hardware emulator in the OpenIFS model, J. Adv. Model. Earth Syst.9, 566-584.
[75] Duff, I. S. and Pralet, S. (2007), Towards stable mixed pivoting strategies for the sequential and parallel solution of sparse symmetric indefinite systems, SIAM J. Matrix Anal. Appl.29, 1007-1024. · Zbl 1145.65021
[76] Duff, I. S., Erisman, A. M. and Reid, J. K. (2017), Direct Methods for Sparse Matrices, second edition, Oxford University Press. · Zbl 1364.65067
[77] Emans, M. and Van Der Meer, A. (2012), Mixed-precision AMG as linear equation solver for definite systems, Procedia Comput. Sci.1, 175-183.
[78] Fasi, M. and Higham, N. J. (2018), Multiprecision algorithms for computing the matrix logarithm, SIAM J. Matrix Anal. Appl.39, 472-491. · Zbl 1390.15073
[79] Fasi, M. and Higham, N. J. (2019), An arbitrary precision scaling and squaring algorithm for the matrix exponential, SIAM J. Matrix Anal. Appl.40, 1233-1256. · Zbl 1437.65033
[80] Fasi, M. and Higham, N. J. (2021), Matrices with tunable infinity-norm condition number and no need for pivoting in LU factorization, SIAM J. Matrix Anal. Appl.42, 417-435. · Zbl 1467.65035
[81] Fasi, M. and Mikaitis, M. (2020), CPFloat: A C library for emulating low-precision arithmetic. MIMS EPrint 2020.22, Manchester Institute for Mathematical Sciences, The University of Manchester, UK.
[82] Fasi, M., Higham, N. J., Lopez, F., Mary, T. and Mikaitis, M. (2022), Matrix multiplication in multiword arithmetic: Error analysis and application to GPU tensor cores. MIMS EPrint 2022.3, Manchester Institute for Mathematical Sciences, The University of Manchester, UK. · Zbl 1511.65040
[83] Fasi, M., Higham, N. J., Mikaitis, M. and Pranesh, S. (2021), Numerical behavior of NVIDIA tensor cores, PeerJ Comput. Sci.7, e330.
[84] Flegar, G., Anzt, H., Cojean, T. and Quintana-Ortí, E. S. (2021), Adaptive precision block-Jacobi for high performance preconditioning in the Ginkgo linear algebra software, ACM Trans. Math. Software47, 1-28. · Zbl 07467974
[85] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P. and Zimmermann, P. (2007), MPFR: A multiple-precision binary floating-point library with correct rounding, ACM Trans. Math. Software33, 13. · Zbl 1365.65302
[86] Fox, L., Huskey, H. D. and Wilkinson, J. H. (1948), The solution of algebraic linear simultaneous equations by punched card methods. Report, Mathematics Division, Department of Scientific and Industrial Research, National Physical Laboratory, Teddington, UK. · Zbl 0033.28503
[87] Fukaya, T., Kannan, R., Nakatsukasa, Y., Yamamoto, Y. and Yanagisawa, Y. (2020), Shifted Cholesky QR for computing the QR factorization of ill-conditioned matrices, SIAM J. Sci. Comput.42, A477-A503. · Zbl 1434.65041
[88] Gao, J., Zheng, F., Qi, F., Ding, Y., Li, H., Lu, H., He, W., Wei, H., Jin, L., Liu, X., Gong, D., Wang, F., Zheng, Y., Sun, H., Zhou, Z., Liu, Y. and You, H. (2021), Sunway supercomputer architecture towards exascale computing: Analysis and practice, Sci. China Inform. Sci. 64, 141101.
[89] Gill, P. E., Saunders, M. A. and Shinnerl, J. R. (1996), On the stability of Cholesky factorization for symmetric quasidefinite systems, SIAM J. Matrix Anal. Appl.17, 35-46. · Zbl 0878.49020
[90] Giraud, L., Gratton, S. and Langou, J. (2007), Convergence in backward error of relaxed GMRES, SIAM J. Sci. Comput.29, 710-728. · Zbl 1142.65031
[91] Giraud, L., Haidar, A. and Watson, L. T. (2008), Mixed-precision preconditioners in parallel domain decomposition solvers, in Domain Decomposition Methods in Science and Engineering XVII (Langer, U.et al., eds), Vol. 60 of Lecture Notes in Computational Science and Engineering, Springer, pp. 357-364. · Zbl 1139.65022
[92] Giraud, L., Langou, J., Rozložník, M. and Van Den Eshof, J. (2005), Rounding error analysis of the classical Gram-Schmidt orthogonalization process, Numer. Math. 101, 87-100. · Zbl 1075.65060
[93] Göbel, F., Grützmacher, T., Ribizel, T. and Anzt, H. (2021), Mixed precision incomplete and factorized sparse approximate inverse preconditioning on GPUs, in Euro-Par 2021: Parallel Processing, Vol. 12820 of Lecture Notes in Computer Science, Springer, pp. 550-564. · Zbl 1514.65032
[94] Goddeke, D. and Strzodka, R. (2011), Cyclic reduction tridiagonal solvers on GPUs applied to mixed-precision multigrid, IEEE Trans. Parallel Distrib. Syst.22, 22-32.
[95] Göddeke, D., Strzodka, R. and Turek, S. (2007), Performance and accuracy of hardware-oriented native-, emulated- and mixed-precision solvers in FEM simulations, Int. J. Parallel Emergent Distrib. Syst.22, 221-256. · Zbl 1188.68084
[96] Govaerts, W. and Pryce, J. D. (1990), Block elimination with one iterative refinement solves bordered linear systems accurately, BIT30, 490-507. · Zbl 0702.65024
[97] Graillat, S., Jézéquel, F., Mary, T. and Molina, R. (2022), Adaptive precision matrix-vector product. Available at hal-03561193.
[98] Gratton, S., Simon, E., Titley-Peloquin, D. and Toint, P. (2019), Exploiting variable precision in GMRES. Available at arXiv:1907.10550. · Zbl 07332751
[99] Greenbaum, A. (1997), Estimating the attainable accuracy of recursively computed residual methods, SIAM J. Matrix Anal. Appl.18, 535-551. · Zbl 0873.65027
[100] Groote, J. F., Morel, R., Schmaltz, J. and Watkins, A. (2021), Logic Gates, Circuits, Processors, Compilers and Computers, Springer. · Zbl 1473.68005
[101] Grützmacher, T., Anzt, H. and Quintana-Ortí, E. S. (2021), Using Ginkgo’s memory accessor for improving the accuracy of memory-bound low precision BLAS, Software Pract. Exper. Available at doi: doi:10.1002/spe.3041.
[102] Gulliksson, M. (1994), Iterative refinement for constrained and weighted linear least squares, BIT34, 239-253. · Zbl 0808.65040
[103] Gupta, S., Agrawal, A., Gopalakrishnan, K. and Narayanan, P. (2015), Deep learning with limited numerical precision, in Proceedings of the 32nd International Conference on Machine Learning (Bach, F. and Blei, D., eds), Vol. 37 of Proceedings of Machine Learning Research, PMLR, pp. 1737-1746.
[104] Haidar, A., Abdelfattah, A., Zounon, M., Wu, P., Pranesh, S., Tomov, S. and Dongarra, J. (2018a), The design of fast and energy-efficient linear solvers: On the potential of half-precision arithmetic and iterative refinement techniques, in Computational Science - ICCS 2018 (Shi, Y.et al., eds), Vol. 10860 of Lecture Notes in Computer Science, Springer, pp. 586-600.
[105] Haidar, A., Bayraktar, H., Tomov, S., Dongarra, J. and Higham, N. J. (2020), Mixed-precision iterative refinement using tensor cores on GPUs to accelerate solution of linear systems, Proc. Roy. Soc. London A476 (2243), 20200110. · Zbl 1472.65174
[106] Haidar, A., Tomov, S., Dongarra, J. and Higham, N. J. (2018b), Harnessing GPU tensor cores for fast FP16 arithmetic to speed up mixed-precision iterative refinement solvers, in Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC18), IEEE, article 47.
[107] Haidar, A., Wu, P., Tomov, S. and Dongarra, J. (2017), Investigating half precision arithmetic to accelerate dense linear system solvers, in Proceedings of the 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA ’17), ACM Press, article 10.
[108] Harvey, R. and Verseghy, D. L. (2015), The reliability of single precision computations in the simulation of deep soil heat diffusion in a land surface model, Climate Dynam.16, 3865-3882.
[109] Henry, G., Tang, P. T. P. and Heinecke, A. (2019), Leveraging the bfloat16 artificial intelligence datatype for higher-precision computations, in 2019 IEEE 26th Symposium on Computer Arithmetic (ARITH), IEEE, pp. 69-76.
[110] Higham, D. J., Higham, N. J. and Pranesh, S. (2021), Random matrices generating large growth in LU factorization with pivoting, SIAM J. Matrix Anal. Appl.42, 185-201. · Zbl 1459.65036
[111] Higham, N. J. (1986), Computing the polar decomposition: With applications, SIAM J. Sci. Statist. Comput.7, 1160-1174. · Zbl 0607.65014
[112] Higham, N. J. (1988), Fast solution of Vandermonde-like systems involving orthogonal polynomials, IMA J. Numer. Anal.8, 473-486. · Zbl 0666.65025
[113] Higham, N. J. (1991), Iterative refinement enhances the stability of \(\text{QR}\) factorization methods for solving linear equations, BIT31, 447-468. · Zbl 0736.65016
[114] Higham, N. J. (1997), Iterative refinement for linear systems and LAPACK, IMA J. Numer. Anal.17, 495-509. · Zbl 0887.65034
[115] Higham, N. J. (2002), Accuracy and Stability of Numerical Algorithms, second edition, SIAM. · Zbl 1011.65010
[116] Higham, N. J. (2008), Functions of Matrices: Theory and Computation, SIAM. · Zbl 1167.15001
[117] Higham, N. J. (2021), Numerical stability of algorithms at extreme scale and low precisions. MIMS EPrint 2021.14, Manchester Institute for Mathematical Sciences, The University of Manchester, UK. To appear in Proc. Int. Cong. Math.
[118] Higham, N. J. and Liu, X. (2021), A multiprecision derivative-free Schur-Parlett algorithm for computing matrix functions, SIAM J. Matrix Anal. Appl.42, 1401-1422. · Zbl 1476.65067
[119] Higham, N. J. and Mary, T. (2019a), A new approach to probabilistic rounding error analysis, SIAM J. Sci. Comput.41, A2815-A2835. · Zbl 07123205
[120] Higham, N. J. and Mary, T. (2019b), A new preconditioner that exploits low-rank approximations to factorization error, SIAM J. Sci. Comput.41, A59-A82. · Zbl 1408.65013
[121] Higham, N. J. and Mary, T. (2020), Sharper probabilistic backward error analysis for basic linear algebra kernels with random data, SIAM J. Sci. Comput.42, A3427-A3446. · Zbl 1452.65090
[122] Higham, N. J. and Mary, T. (2021), Solving block low-rank linear systems by LU factorization is numerically stable, IMA J. Numer. Anal. Available at doi: doi:10.1093/imanum/drab020. · Zbl 1511.65024
[123] Higham, N. J. and Pranesh, S. (2019), Simulating low precision floating-point arithmetic, SIAM J. Sci. Comput.41, C585-C602. · Zbl 07124603
[124] Higham, N. J. and Pranesh, S. (2021), Exploiting lower precision arithmetic in solving symmetric positive definite linear systems and least squares problems, SIAM J. Sci. Comput.43, A258-A277. · Zbl 1467.65023
[125] Higham, N. J., Pranesh, S. and Zounon, M. (2019), Squeezing a matrix into half precision, with an application to solving linear systems, SIAM J. Sci. Comput.41, A2536-A2551. · Zbl 1420.65017
[126] Ho, N.-M., De Silva, H. and Wong, W.-F. (2021), GRAM: A framework for dynamically mixing precisions in GPU applications, ACM Trans. Archit. Code Optim.18, 1-24.
[127] Hogg, J. D. and Scott, J. A. (2010), A fast and robust mixed-precision solver for the solution of sparse symmetric linear systems, ACM Trans. Math. Software37, 17. · Zbl 1364.65070
[128] Idomura, Y., Ina, T., Ali, Y. and Imamura, T. (2020), Acceleration of fusion plasma turbulence simulations using the mixed-precision communication-avoiding Krylov method, in International Conference for High Performance Computing, Networking, Storage and Analysis (SC20), IEEE, pp. 1-13.
[129] (1985), IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, Institute of Electrical and Electronics Engineers.
[130] (2008), IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008 (Revision of IEEE 754-1985), Institute of Electrical and Electronics Engineers.
[131] (2018), BFLOAT16: Hardware Numerics Definition. White paper. Document number 338302-001US.
[132] Ipsen, I. C. F. and Zhou, H. (2020), Probabilistic error analysis for inner products, SIAM J. Matrix Anal. Appl.41, 1726-1741. · Zbl 1461.65068
[133] Iwashita, T., Suzuki, K. and Fukaya, T. (2020), An integer arithmetic-based sparse linear solver using a GMRES method and iterative refinement, in 2020 IEEE/ACM 11th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA), IEEE, pp. 1-8.
[134] Jankowski, M. and Woźniakowski, H. (1977), Iterative refinement implies numerical stability, BIT17, 303-311. · Zbl 0372.65012
[135] Johansson, F.et al. (2013), Mpmath: A Python library for arbitrary-precision floating-point arithmetic. Available at http://mpmath.org.
[136] Joldes, M., Muller, J.-M. and Popescu, V. (2017), Tight and rigorous error bounds for basic building blocks of double-word arithmetic, ACM Trans. Math. Software44, 15res. · Zbl 1484.65103
[137] Jouppi, N. P., Yoon, D. H., Ashcraft, M., Gottscho, M., Jablin, T. B., Kurian, G., Laudon, J., Li, S., Ma, P., Ma, X., Norrie, T., Patil, N., Prasad, S., Young, C., Zhou, Z. and Patterson, D. (2021), Ten lessons from three generations shaped Google’s TPUv4i: Industrial product, in 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), IEEE, pp. 1-14.
[138] Jouppi, N. P., Yoon, D. H., Kurian, G., Li, S., Patil, N., Laudon, J., Young, C. and Patterson, D. (2020), A domain-specific supercomputer for training deep neural networks, Comm. Assoc. Comput. Mach.63, 67-78.
[139] Kahan, W. (1981), Why do we need a floating-point arithmetic standard? Technical report, University of California, Berkeley, CA, USA.
[140] Kelley, C. T. (1995), Iterative Methods for Linear and Nonlinear Equations, SIAM. · Zbl 0832.65046
[141] Kelley, C. T. (2022), Newton’s method in mixed precision, SIAM Rev.64, 191-211. · Zbl 1484.65108
[142] Kiełbasiński, A. (1981), Iterative refinement for linear systems in variable-precision arithmetic, BIT21, 97-103. · Zbl 0455.65025
[143] Knight, P. A., Ruiz, D. and Uçar, B. (2014), A symmetry preserving algorithm for matrix scaling, SIAM J. Matrix Anal. Appl.35, 931-955. · Zbl 1329.65089
[144] Kronbichler, M. and Ljungkvist, K. (2019), Multigrid for matrix-free high-order finite element computations on graphics processors, ACM Trans. Parallel Comput.6, 2.
[145] Kudo, S., Nitadori, K., Ina, T. and Imamura, T. (2020a), Implementation and numerical techniques for one EFlop/s HPL-AI benchmark on Fugaku, in Proceedings of the 11th IEEE/ACM Workshop on Latest Advances in Scalable Algorithms for Large-Scale, Vol. 1, IEEE, pp. 69-76.
[146] Kudo, S., Nitadori, K., Ina, T. and Imamura, T. (2020b), Prompt report on exa-scale HPL-AI benchmark, in 2020 IEEE International Conference on Cluster Computing (CLUSTER), IEEE, pp. 418-419.
[147] Kurzak, J. and Dongarra, J. (2007), Implementation of mixed precision in solving systems of linear equations on the Cell processor, Concurrency Comput. Pract. Exper. 19, 1371-1385.
[148] Langou, J., Langou, J., Luszczek, P., Kurzak, J., Buttari, A. and Dongarra, J. (2006), Exploiting the performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy (revisiting iterative refinement for linear systems), in Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (SC ’06), IEEE.
[149] Lefèvre, V. and Zimmermann, P. (2017), Optimized binary64 and binary128 arithmetic with GNU MPFR, in 2017 IEEE 24th Symposium on Computer Arithmetic (ARITH), IEEE, pp. 18-26.
[150] Li, X. S. and Demmel, J. W. (1998), Making sparse Gaussian elimination scalable by static pivoting, in Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, IEEE, pp. 1-17.
[151] Li, X. S. and Demmel, J. W. (2003), SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems, ACM Trans. Math. Software29, 110-140. · Zbl 1068.90591
[152] Li, X. S., Demmel, J. W., Bailey, D. H., Henry, G., Hida, Y., Iskandar, J., Kahan, W., Kang, S. Y., Kapur, A., Martin, M. C., Thompson, B. J., Tung, T. and Yoo, D. J. (2002), Design, implementation and testing of extended and mixed precision BLAS, ACM Trans. Math. Software28, 152-205. · Zbl 1070.65523
[153] Lichtenau, C., Carlough, S. and Mueller, S. M. (2016), Quad precision floating point on the IBM z13, in 2016 IEEE 23rd Symposium on Computer Arithmetic (ARITH), IEEE, pp. 87-94.
[154] Lindquist, N., Luszczek, P. and Dongarra, J. (2020), Improving the performance of the GMRES method using mixed-precision techniques, in Communications in Computer and Information Science (Nichols, J.et al., eds), Springer, pp. 51-66.
[155] Lindquist, N., Luszczek, P. and Dongarra, J. (2022), Accelerating restarted GMRES with mixed precision arithmetic, IEEE Trans. Parallel Distrib. Syst.33, 1027-1037.
[156] Loe, J. A., Glusa, C. A., Yamazaki, I., Boman, E. G. and Rajamanickam, S. (2021a), Experimental evaluation of multiprecision strategies for GMRES on GPUs, in 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), IEEE, pp. 469-478.
[157] Loe, J. A., Glusa, C. A., Yamazaki, I., Boman, E. G. and Rajamanickam, S. (2021b), A study of mixed precision strategies for GMRES on GPUs. Available at arXiv:2109.01232.
[158] Lopez, F. and Mary, T. (2020), Mixed precision LU factorization on GPU tensor cores: Reducing data movement and memory footprint. MIMS EPrint 2020.20, Manchester Institute for Mathematical Sciences, The University of Manchester, UK.
[159] Luszczek, P., Yamazaki, I. and Dongarra, J. (2019), Increasing accuracy of iterative refinement in limited floating-point arithmetic on half-precision accelerators, in 2019 IEEE High Performance Extreme Computing Conference (HPEC), IEEE, pp. 1-6.
[160] Markidis, S., Wei Der Chien, S., Laure, E., Peng, I. B. and Vetter, J. S. (2018), NVIDIA tensor core programmability, performance & precision, in 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), IEEE, pp. 522-531.
[161] Maynard, C. M. and Walters, D. N. (2019), Mixed-precision arithmetic in the ENDGame dynamical core of the unified model, a numerical weather prediction and climate model code, Comput. Phys. Comm.244, 69-75.
[162] Mccormick, S. F., Benzaken, J. and Tamstorf, R. (2021), Algebraic error analysis for mixed-precision multigrid solvers, SIAM J. Sci. Comput.43, S392-S419. · Zbl 07418113
[163] Meurer, A., Smith, C. P., Paprocki, M., C̆Ertik, O., Kirpichev, S. B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M. J., Terrel, A. R., Roučka, Š., Saboo, A., Fernando, I., Kulal, S., Cimrman, R. and Scopatz, A. (2017), SymPy: Symbolic computing in Python, PeerJ Comput. Sci. 3, e103.
[164] Moler, C. B. (1967), Iterative refinement in floating point, J. Assoc. Comput. Mach.14, 316-321. · Zbl 0161.35501
[165] Moler, C. B. (2017), ‘Half precision’ \(16\) -bit floating point arithmetic. Available at tp://blogs.mathworks.com/cleve/2017/05/08/half-precision-16-bit-floating-point-arithmetic/.
[166] Moler, C. B. (2019), Variable format half precision floating point arithmetic. Available at https://blogs.mathworks.com/cleve/2019/01/16/variable-format-half-precision-floating-point-arithmetic/.
[167] Mukunoki, D., Ozaki, K., Ogita, T. and Imamura, T. (2020), DGEMM using tensor cores, and its accurate and reproducible versions, in High Performance Computing (Sadayappan, P.et al., eds), Springer, pp. 230-248.
[168] Muller, J.-M., Brunie, N., De Dinechin, F., Jeannerod, C.-P., Joldes, M., Lefèvre, V., Melquiond, G., Revol, N. and Torres, S. (2018), Handbook of Floating-Point Arithmetic, second edition, Birkhäuser. · Zbl 1394.65001
[169] Nakata, M. (2021), MPLAPACK version 1.0.0 user manual. Available at arXiv:2109.13406.
[170] Norrie, T., Patil, N., Yoon, D. H., Kurian, G., Li, S., Laudon, J., Young, C., Jouppi, N. and Patterson, D. (2021), The design process for Google’s training chips: TPUv2 and TPUv3, IEEE Micro41, 56-63.
[171] (2020), NVIDIA A100 Tensor Core GPU Architecture, v1.0.
[172] Ogita, T. and Aishima, K. (2018), Iterative refinement for symmetric eigenvalue decomposition, Japan J. Indust. Appl. Math.35, 1007-1035. · Zbl 1403.65018
[173] Ogita, T. and Aishima, K. (2019), Iterative refinement for symmetric eigenvalue decomposition II: Clustered eigenvalues, Japan J. Indust. Appl. Math.36, 435-459. · Zbl 1418.65049
[174] Ogita, T. and Aishima, K. (2020), Iterative refinement for singular value decomposition based on matrix multiplication, J. Comput. Appl. Math.369, 112512. · Zbl 1431.65045
[175] Oktay, E. and Carson, E. (2022), Multistage mixed precision iterative refinement, Numer. Linear Algebra Appl. Available at doi: doi:10.1002/nla.2434. · Zbl 1538.65070
[176] Oo, K. L. and Vogel, A. (2020), Accelerating geometric multigrid preconditioning with half-precision arithmetic on GPUs. Available at arXiv:2007.07539.
[177] Ooi, R., Iwashita, T., Fukaya, T., Ida, A. and Yokota, R. (2020), Effect of mixed precision computing on H-matrix vector multiplication in BEM analysis, in Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region, ACM Press.
[178] O’Uchi, S.-I, Fuketa, H., Ikegami, T., Nogami, W., Matsukawa, T., Kudoh, T. and Takano, R. (2018), Image-classifier deep convolutional neural network training by 9-bit dedicated hardware to realize validation accuracy and energy efficiency superior to the half precision floating point format, in 2018 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE, pp. 1-5.
[179] Paige, C. C., Rozložník, M. and Strakoš, Z. (2006), Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES, SIAM J. Matrix Anal. Appl.28, 264-284. · Zbl 1113.65028
[180] Palmer, T. N. (2014), More reliable forecasts with less precise computations: A fast-track route to cloud-resolved weather and climate simulators?, Phil. Trans. R. Soc. A372 (2018), 1-14. · Zbl 1353.86023
[181] Palmer, T. N. (2020), The physics of numerical analysis: A climate modelling case study, Phil. Trans. R. Soc. A378 (2166), 1-6. · Zbl 1462.86010
[182] Petschow, M., Quintana-Ortí, E. and Bientinesi, P. (2014), Improved accuracy and parallelism for MRRR-based eigensolvers: A mixed precision approach, SIAM J. Sci. Comput.36, C240-C263. · Zbl 1296.65059
[183] Pisha, L. and Ligowski, L. (2021), Accelerating non-power-of-2 size Fourier transforms with GPU tensor cores, in 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS), IEEE, pp. 507-516.
[184] Ralha, R. (2018), Mixed precision bisection, Math. Comput. Sci.12, 173-181. · Zbl 1402.65027
[185] Rubio-González, C., Nguyen, C., Nguyen, H. D., Demmel, J., Kahan, W., Sen, K., Bailey, D. H., Iancu, C. and Hough, D. (2013), Precimonious: Tuning assistant for floating-point precision, in Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (SC ’13), ACM Press, article 27.
[186] San Juan, P., Rodríguez-Sánchez, R., Igual, F. D., Alonso-Jordá, P. and Quintana-Ortí, E. S. (2021), Low precision matrix multiplication for efficient deep learning in NVIDIA carmel processors, J. Supercomput.77, 11257-11269.
[187] Sato, M., Ishikawa, Y., Tomita, H., Kodama, Y., Odajima, T., Tsuji, M., Yashiro, H., Aoki, M., Shida, N., Miyoshi, I., Hirai, K., Furuya, A., Asato, A., Morita, K. and Shimizu, T. (2020), Co-design for A64FX manycore processor and ‘Fugaku’, in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC ’20), IEEE.
[188] Scheinberg, K. (2016), Evolution of randomness in optimization methods for supervised machine learning, SIAG/OPT Views and News24, 1-8.
[189] Schenk, O., Gärtner, K., Fichtner, W. and Stricker, A. (2001), PARDISO: A high-performance serial and parallel sparse linear solver in semiconductor device simulation, Future Gener. Comput. Syst.18, 69-78. · Zbl 1032.68172
[190] Simoncini, V. and Szyld, D. B. (2003), Theory of inexact Krylov subspace methods and applications to scientific computing, SIAM J. Sci. Comput.25, 454-477. · Zbl 1048.65032
[191] Skeel, R. D. (1980), Iterative refinement implies numerical stability for Gaussian elimination, Math. Comp.35, 817-832. · Zbl 0441.65027
[192] Smoktunowicz, A. and Sokolnicka, J. (1984), Binary cascades iterative refinement in doubled-mantissa arithmetics, BIT24, 123-127. · Zbl 0574.65023
[193] Sorna, A., Cheng, X., D’Azevedo, E., Won, K. and Tomov, S. (2018), Optimizing the fast Fourier transform using mixed precision on tensor core hardware, in 2018 IEEE 25th International Conference on High Performance Computing Workshops (HiPCW), IEEE, pp. 3-7.
[194] Stathopoulos, A. and Wu, K. (2002), A block orthogonalization procedure with constant synchronization requirements, SIAM J. Sci. Comput.23, 2165-2182. · Zbl 1018.65050
[195] Stewart, G. W. (1973), Introduction to Matrix Computations, Academic Press. · Zbl 0302.65021
[196] Stor, N. J., Slapničar, I. and Barlow, J. L. (2015), Accurate eigenvalue decomposition of real symmetric arrowhead matrices and applications, Linear Algebra Appl.464, 62-89. · Zbl 1302.65087
[197] Sumiyoshi, Y., Fujii, A., Nukada, A. and Tanaka, T. (2014), Mixed-precision AMG method for many core accelerators, in Proceedings of the 21st European MPI Users’ Group Meeting (EuroMPI/ASIA ’14), ACM Press, pp. 127-132.
[198] Sun, J., Peterson, G. D. and Storaasli, O. O. (2008), High-performance mixed-precision linear solver for FPGAs, IEEE Trans. Comput.57, 1614-1623. · Zbl 1367.94349
[199] Tagliavini, G., Mach, S., Rossi, D., Marongiu, A. and Benin, L. (2018), A transprecision floating-point platform for ultra-low power computing, in 2018 Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 1051-1056.
[200] Tamstorf, R., Benzaken, J. and Mccormick, S. F. (2021), Discretization-error-accurate mixed-precision multigrid solvers, SIAM J. Sci. Comput.43, S420-S447. · Zbl 07418114
[201] Tintó Prims, O., Acosta, M. C., Moore, A. M., Castrillo, M., Serradell, K., Cortés, A. and Doblas-Reyes, F. J. (2019), How to use mixed precision in ocean models: Exploring a potential reduction of numerical precision in NEMO 4.0 and ROMS 3.6, Geosci. Model Dev. 12, 3135-3148.
[202] Tisseur, F. (2001), Newton’s method in floating point arithmetic and iterative refinement of generalized eigenvalue problems, SIAM J. Matrix Anal. Appl.22, 1038-1057. · Zbl 0982.65040
[203] Trader, T. (2016), IBM advances against x86 with Power9. Available at https://www.hpcwire.com/2016/08/30/ibm-unveils-power9-details/.
[204] Tsai, Y. M., Luszczek, P. and Dongarra, J. (2021), Mixed-precision algorithm for finding selected eigenvalues and eigenvectors of symmetric and Hermitian matrices. Technical report ICL-UT-21-05, Innovative Computing Laboratory, The University of Tennessee, Knoxville, TN, USA.
[205] Tsuchida, E. and Choe, Y.-K. (2012), Iterative diagonalization of symmetric matrices in mixed precision and its application to electronic structure calculations, Comput. Phys. Comm.183, 980-985. · Zbl 1264.65056
[206] Turner, K. and Walker, H. F. (1992), Efficient high accuracy solutions with GMRES \(( m\) ), SIAM J. Sci. Statist. Comput.12, 815-825. · Zbl 0758.65029
[207] Van Den Eshof, J. and Sleijpen, G. L. G. (2004), Inexact Krylov subspace methods for linear systems, SIAM J. Matrix Anal. Appl.26, 125-153. · Zbl 1079.65036
[208] Váňa, F., Düben, P., Lang, S., Palmer, T., Leutbecher, M., Salmond, D. and Carver, G. (2017), Single precision in weather forecasting models: An evaluation with the IFS, Mon. Weather Rev.145, 495-502.
[209] Von Neumann, J. and Goldstine, H. H. (1947), Numerical inverting of matrices of high order, Bull. Amer. Math. Soc.53, 1021-1099. · Zbl 0031.31402
[210] Wang, E., Davis, J. J., Zhao, R., Ng, H.-C., Niu, X., Luk, W., Cheung, P. Y. K. and Constantinides, G. A. (2019), Deep neural network approximation for custom hardware, ACM Comput. Surv.52, 1-39.
[211] Wang, N., Choi, J., Brand, D., Chen, C.-Y. and Gopalakrishnan, K. (2018), Training deep neural networks with \(8\) -bit floating point numbers, in Advances in Neural Information Processing Systems 31 (Bengio, S.et al. eds), Curran Associates, pp. 7686-7695.
[212] Wang, S. and Kanwar, P. (2019), BFloat16: The secret to high performance on cloud TPUs. Available at https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus.
[213] Wilkinson, J. H. (1948), Progress report on the Automatic Computing Engine. Report MA/17/1024, Mathematics Division, Department of Scientific and Industrial Research, National Physical Laboratory, Teddington, UK.
[214] Wilkinson, J. H. (1961), Error analysis of direct methods of matrix inversion, J. Assoc. Comput. Mach.8, 281-330. · Zbl 0109.09005
[215] Wilkinson, J. H. (1963), Rounding Errors in Algebraic Processes, Notes on Applied Science No. 32, Her Majesty’s Stationery Office. Also published by Prentice Hall, USA. Reprinted by Dover, 1994. · Zbl 1041.65502
[216] Wilkinson, J. H. (1977), The use of the single-precision residual in the solution of linear systems. Unpublished manuscript.
[217] Yamazaki, I., Tomov, S. and Dongarra, J. (2015a), Mixed-precision Cholesky QR factorization and its case studies on multicore CPU with multiple GPUs, SIAM J. Sci. Comput.37, C307-C330. · Zbl 1320.65046
[218] Yamazaki, I., Tomov, S. and Dongarra, J. (2016), Stability and performance of various singular value QR implementations on multicore CPU with a GPU, ACM Trans. Math. Software43, 10. · Zbl 1391.65093
[219] Yamazaki, I., Tomov, S., Dong, T. and Dongarra, J. (2015b), Mixed-precision orthogonalization scheme and adaptive step size for improving the stability and performance of CA-GMRES on GPUs, in High Performance Computing for Computational Science (VECPAR 2014) (Daydé, M.et al., eds), Vol. 8969 of Lecture Notes in Computer Science, Springer, pp. 17-30. · Zbl 07631077
[220] Yamazaki, I., Tomov, S., Kurzak, J., Dongarra, J. and Barlow, J. (2015c), Mixed-precision block Gram Schmidt orthogonalization, in Proceedings of the 6th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA ’15), ACM Press.
[221] Yang, K., Chen, Y.-F., Roumpos, G., Colby, C. and Anderson, J. (2019), High performance Monte Carlo simulation of Ising model on TPU clusters, in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC ’19), ACM Press.
[222] Yang, L. M., Fox, A. and Sanders, G. (2021), Rounding error analysis of mixed precision block Householder QR algorithms, SIAM J. Sci. Comput.43, A1723-A1753. · Zbl 1512.65066
[223] Zhang, S., Baharlouei, E. and Wu, P. (2020), High accuracy matrix computations on neural engines: A study of QR factorization and its applications, in Proceedings of the 29th International Symposium on High-Performance Parallel and Distributed Computing, ACM Press.
[224] Zhu, Y.-K. and Hayes, W. B. (2009), Correct rounding and a hybrid approach to exact floating-point summation, SIAM J. Sci. Comput.31, 2981-3001. · Zbl 1204.65046
[225] Zlatev, Z. (1982), Use of iterative refinement in the solution of sparse linear systems, SIAM J. Numer. Anal.19, 381-399. · Zbl 0485.65022
[226] Zounon, M., Higham, N. J., Lucas, C. and Tisseur, F. (2022), Performance impact of precision reduction in sparse linear systems solvers, PeerJ Comput. Sci.8, e778.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.