×

Unconditional optimal error estimates of linearized, decoupled and conservative Galerkin FEMs for the Klein-Gordon-Schrödinger equation. (English) Zbl 1476.65259

Summary: This paper is concerned with unconditionally optimal error estimates of linearized leap-frog Galerkin finite element methods (FEMs) to numerically solve the \(d\)-dimensional \((d=2,3)\) nonlinear Klein-Gordon-Schrödinger (KGS) equation. The proposed FEMs not only conserve the mass and energy in the given discrete norm but also are efficient in implementation because only two linear systems need to be solved at each time step. Meanwhile, an optimal error estimate for the proposed methods is derived by using the temporal-spatial error splitting techniques, which split the error between the exact solution and the numerical solution into two parts, i.e., the temporal error and the spatial error. Since the spatial error is \(\tau\)-independent, the boundedness of the numerical solution in \(L^\infty\)-norm follows an inverse inequality immediately without any restriction on the grid ratios. Then, the optimal \(L^2\) error estimates for \(r\)-order FEMs are derived unconditionally. Numerical results in both two and three dimensional spaces are given to confirm the theoretical predictions and demonstrate the efficiency of the methods.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)
35Q41 Time-dependent Schrödinger equations and Dirac equations

Software:

FreeFem++
Full Text: DOI

References:

[1] Adams, RA; Fournier, JJ, Sobolev Spaces (2003), New York: Academic Press, New York · Zbl 1098.46001
[2] Akrivis, GD; Dougalis, VA; Karakashian, OA, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math., 59, 31-53 (1991) · Zbl 0739.65096 · doi:10.1007/BF01385769
[3] Antoine, X.; Besse, C.; Klein, P., Absorbing boundary conditions for general nonlinear Schrödinger equations, SIAM J. Sci. Comput., 33, 1008-1033 (2011) · Zbl 1231.35223 · doi:10.1137/090780535
[4] Bao, W.; Dong, X.; Wang, S., Singular limits of Klein-Gordon-Schrödinger equations, Multiscale Model. Simul., 8, 1742-1769 (2010) · Zbl 1210.35223 · doi:10.1137/100790586
[5] Bao, W.; Mauser, NJ; Stimming, HP, Effective one particle quantum dynamics of electrons: a numerical study of the Schrödinger-Poisson-X \(\alpha\) model, Commun. Math. Sci., 1, 809-828 (2003) · Zbl 1160.81497 · doi:10.4310/CMS.2003.v1.n4.a8
[6] Bao, W.; Yang, L., Efficient and accurate numerical methods for the Klein-Gordon-Schrödinger equations, J. Comput. Phys., 225, 1863-1893 (2007) · Zbl 1125.65093 · doi:10.1016/j.jcp.2007.02.018
[7] Biler, P., Attractors for the system of Schrödinger and Klein-Gordon equations with Yukawa coupling, SIAM J. Math. Anal., 21, 1190-1212 (1990) · Zbl 0725.35020 · doi:10.1137/0521065
[8] Bohun, S.; Illner, R.; Lange, H.; Zweifel, PF, Error estimates for Galerkin approximations to the periodic Schrödinger-Poisson system, ZAMM Z. Angew. Math. Mech., 76, 7-13 (1996) · Zbl 0864.65062 · doi:10.1002/zamm.19960760103
[9] Borz, A.; Decker, E., Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation, J. Comput. Appl. Math., 193, 65-88 (2006) · Zbl 1118.65107 · doi:10.1016/j.cam.2005.04.066
[10] Brenner, S.; Scott, LR, The Mathematical Theory of Finite Element Methods (1994), Berlin: Springer, Berlin · Zbl 0804.65101 · doi:10.1007/978-1-4757-4338-8
[11] Cai, W.; He, D.; Pan, K., A linearized energy-conservative finite element method for the nonlinear Schrödinger equation with wave operator, Appl. Numer. Math., 140, 183-198 (2019) · Zbl 1432.65144 · doi:10.1016/j.apnum.2019.02.005
[12] Castillo, P.; Gómez, S., Conservative local discontinuous Galerkin method for the fractional Klein-Gordon-Schrödinger system with generalized Yukawa interaction, Numer. Algorithms, 84, 407-425 (2020) · Zbl 1434.65155 · doi:10.1007/s11075-019-00761-3
[13] Dehghan, M.; Mohammadi, V., Two numerical meshless techniques based on radial basis functions (RBFs) and the method of generalized moving least squares (GMLS) for simulation of coupled Klein-Gordon-Schrödinger (KGS) equations, Comput. Math. Appl., 71, 892-921 (2016) · Zbl 1443.65240 · doi:10.1016/j.camwa.2015.12.033
[14] Douglas, J. Jr; Ewing, RE; Wheeler, MF, A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media, RAIRO Anal. Numer., 17, 249-265 (1983) · Zbl 0526.76094 · doi:10.1051/m2an/1983170302491
[15] Ewing, RE; Wheeler, MF, Galerkin methods for miscible displacement problems in porous media, SIAM J. Numer. Anal., 17, 351-365 (1980) · Zbl 0458.76092 · doi:10.1137/0717029
[16] Fukuda, I.; Tsutsumi, M., On coupled Klein-Gordon-Schrödinger equations, I, Bull. Sci. Eng. Lab. Waseda Univ., 69, 51-62 (1975) · Zbl 0313.35065
[17] Fukuda, I.; Tsutsumi, M., On coupled Klein-Gordon-Schrödinger equations II, J. Math. Anal. Appl., 66, 358-378 (1978) · Zbl 0396.35082 · doi:10.1016/0022-247X(78)90239-1
[18] Gao, H., Optimal error estimates of a linearized backward Euler FEM for the Landau-Lifshitz equation, SIAM J. Numer. Anal., 52, 2574-2593 (2014) · Zbl 1310.65125 · doi:10.1137/130936476
[19] Gao, H.; Li, B.; Sun, W., Optimal error estimates of linearized Crank-Nicolson Galerkin FEMs for the time-dependent Ginzburg-Landau equations in superconductivity, SIAM J. Numer. Anal., 52, 1183-1202 (2014) · Zbl 1328.65206 · doi:10.1137/130918678
[20] Guo, B., Global solution for some problem of class of equations in interaction of complex Schrödinger field and real Klein-Gordon field, Sci. China Ser. A, 2, 97-107 (1982)
[21] Guo, B.; Miao, C., Global existence and asymptotic behavior of solutions for the coupled Klein-Gordon-Schrödinger equations, Sci. China Ser. A, 38, 1444-1456 (1995) · Zbl 0845.35098
[22] Guo, B.; Miao, C., Asymptotic behavior of coupled Klein-Gordon-Schrodinger equations, Sci. China Ser. A, 25, 705-714 (1995)
[23] Guo, L.; Xu, Y., Energy conserving local discontinuous Galerkin methods for the nonlinear Schrödinger equation with wave operator, J. Sci. Comput., 65, 622-647 (2015) · Zbl 1334.65154 · doi:10.1007/s10915-014-9977-z
[24] Hecht, F., New development in Freefem++, J. Numer. Math., 20, 251-265 (2012) · Zbl 1266.68090 · doi:10.1515/jnum-2012-0013
[25] Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem. Part IV: error analysis for the second order time discretization. SIAM J. Numer. Anal. 2, 353-384 (1990) · Zbl 0694.76014
[26] Hioe, F., Periodic solitary waves for two coupled nonlinear Klein-Gordon and Schrödinger equations, J. Phys. A Math. Gen., 36, 7307-7330 (2003) · Zbl 1046.81019 · doi:10.1088/0305-4470/36/26/307
[27] Hong, J.; Jiang, S.; Li, C., Explicit multi-symplectic methods for Klein-Gordon-Schrödinger equations, J. Comput. Phys., 228, 3517-3532 (2009) · Zbl 1164.65035 · doi:10.1016/j.jcp.2009.02.006
[28] Hong, Q.; Wang, Y.; Wang, J., Optimal error estimate of a linear Fourier pseudo-spectral scheme for two dimensional Klein-Gordon-Schrödinger equations, J. Math. Anal. Appl., 468, 817-838 (2018) · Zbl 1407.65213 · doi:10.1016/j.jmaa.2018.08.045
[29] Hou, Y.; Li, B.; Sun, W., Error estimates of splitting Galerkin methods for heat and sweat transport in textile materials, SIAM J. Numer. Anal., 51, 88-111 (2013) · Zbl 1439.74421 · doi:10.1137/110854813
[30] Li, M.; Shi, D.; Wang, J.; Ming, W., Unconditional superconvergence analysis of the conservative linearized Galerkin FEMs for nonlinear Klein-Gordon-Schrödinger equation, Appl. Numer. Math., 142, 47-63 (2019) · Zbl 1477.65160 · doi:10.1016/j.apnum.2019.02.004
[31] Li, B.; Sun, W., Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations, Int. J. Numer. Anal. Mod., 10, 622-633 (2013) · Zbl 1281.65122
[32] Li, B.: Mathematical modeling, analysis and computation for some complex and nonlinear flow problems. Ph.D. Thesis, City University of Hong Kong, Hong Kong (2012)
[33] Li, B.; Gao, H.; Sun, W., Unconditionally optimal error estimates of a Crank-Nicolson Galerkin method for the nonlinear thermistor equations, SIAM J. Numer. Anal., 52, 933-954 (2014) · Zbl 1298.65160 · doi:10.1137/120892465
[34] Li, B.; Sun, W., Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media, SIAM J. Numer. Anal., 51, 1959-1977 (2013) · Zbl 1311.76067 · doi:10.1137/120871821
[35] Li, B.; Wang, J.; Sun, W., The stability and convergence of fully discrete Galerkin-Galerkin FEMs for porous medium flows, Commun. Comput. Phys., 15, 1141-1158 (2014) · Zbl 1373.76094 · doi:10.4208/cicp.080313.051213s
[36] Li, D., Optimal error estimates of a linearized Crank-Nicolson Galerkin FEM for the Kuramoto-Tsuzuki equations, Commun. Comput. Phys., 26, 838-854 (2019) · Zbl 1473.65310 · doi:10.4208/cicp.OA-2018-0208
[37] Mu, M.; Huang, Y., An alternating Crank-Nicolson method for decoupling the Ginzburg-Landau equations, SIAM J. Numer. Anal., 35, 1740-1761 (1998) · Zbl 0914.65129 · doi:10.1137/S0036142996303092
[38] Ohta, M., Stability of stationary states for the coupled Klein-Gordon-Schrödinger equations, Nonlinear Anal., 27, 455-461 (1996) · Zbl 0867.35092 · doi:10.1016/0362-546X(95)00017-P
[39] Sanz-Serna, JM, Methods for the numerical solution of nonlinear Schrödinger equation, Math. Comput., 43, 21-27 (1984) · Zbl 0555.65061 · doi:10.1090/S0025-5718-1984-0744922-X
[40] Tourigny, Y., Optimal \(H^1\) estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation, IMA J. Numer. Anal., 11, 509-523 (1991) · Zbl 0737.65095 · doi:10.1093/imanum/11.4.509
[41] Wang, J., A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation, J. Sci. Comput., 60, 390-407 (2014) · Zbl 1306.65257 · doi:10.1007/s10915-013-9799-4
[42] Wang, J., Unconditional stability and convergence of Crank-Nicolson Galerkin FEMs for a nonlinear Schrödinger-Helmholtz system, Numer. Math., 139, 479-503 (2018) · Zbl 1402.65119 · doi:10.1007/s00211-017-0944-0
[43] Wang, M.; Zhou, Y., The periodic wave solutions for the Klein-Gordon-Schrödinger equations, Phys. Lett. A, 318, 84-92 (2003) · Zbl 1098.81770 · doi:10.1016/j.physleta.2003.07.026
[44] Wang, S.; Zhang, L., A class of conservative orthogonal spline collocation schemes for solving coupled Klein-Gordon-Schrödinger equations, Appl. Math. Comput., 203, 799-812 (2008) · Zbl 1180.65135
[45] Wang, T.; Jiang, Y., Point-wise errors of two conservative difference schemes for the Klein-Gordon-Schrödinger equation, Commun. Nonlinear Sci. Numer. Simul., 17, 4565-4575 (2012) · Zbl 1263.35184 · doi:10.1016/j.cnsns.2012.03.032
[46] Wang, T.; Zhao, X.; Jiang, J., Unconditional and optimal \(H^2\)-error estimates of two linear and conservative finite difference schemes for the Klein-Gordon-Schrödinger equation in high dimensions, Adv. Comput. Math., 44, 477-503 (2018) · Zbl 1448.65122 · doi:10.1007/s10444-017-9557-5
[47] Xiang, X., Spectral method for solving the system of equations of Schrödinger-Klein-Gordon field, J. Comput. Appl. Math., 21, 161-171 (1988) · Zbl 0634.65127 · doi:10.1016/0377-0427(88)90265-8
[48] Zhang, F.; Peréz-García, V.; Vázquez, L., Numerical simulation of nonlinear Schrödinger equation system: a new conservative scheme, Appl. Math. Comput., 71, 165-177 (1995) · Zbl 0832.65136
[49] Zhang, F.; Han, B., The finite difference method for dissipative Klein-Gordon-Schrödinger equations in three dimensions, J. Comput. Math., 28, 879-900 (2010) · Zbl 1240.65263 · doi:10.4208/jcm.1004-m3191
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.