×

Recent advances in the study of a fourth-order compact scheme for the one-dimensional biharmonic equation. (English) Zbl 1254.65117

Summary: It is well-known that non-periodic boundary conditions reduce considerably the overall accuracy of an approximating scheme. In previous papers the present authors have studied a fourth-order compact scheme for the one-dimensional biharmonic equation. It relies on Hermitian interpolation, using functional values and Hermitian derivatives on a three-point stencil. However, the fourth-order accuracy is reduced to a mere first-order near the boundary. In turn this leads to an “almost third-order” accuracy of the approximate solution. By a careful inspection of the matrix elements of the discrete operator, it is shown that the boundary does not affect the approximation, and a full (“optimal”) fourth-order convergence is attained. A number of numerical examples corroborate this effect.

MSC:

65N06 Finite difference methods for boundary value problems involving PDEs

References:

[1] Abarbanel, S., Ditkowski, A., Gustafsson, B.: On error bound of finite difference approximations for partial differential equations. J. Sci. Comput. 15(1), 79–116 (2000) · Zbl 0984.65095 · doi:10.1023/A:1007688522777
[2] Altas, I., Dym, J., Gupta, M.M., Manohar, R.P.: Multigrid solution of automatically generated high-order discretizations for the biharmonic equation. SIAM J. Sci. Comput. 19, 1575–1585 (1998) · Zbl 0918.65079 · doi:10.1137/S1464827596296970
[3] Ben-Artzi, M., Croisille, J.-P., Fishelov, D.: Convergence of a compact scheme for the pure streamfunction formulation of the unsteady Navier-Stokes system. SIAM J. Numer. Anal. 44(5), 1997–2024 (2006) · Zbl 1344.76059 · doi:10.1137/05062915X
[4] Ben-Artzi, M., Croisille, J.-P., Fishelov, D.: A fast direct solver for the biharmonic problem in a rectangular grid. SIAM J. Sci. Comput. 31(1), 303–333 (2008) · Zbl 1184.35126 · doi:10.1137/070694168
[5] Brüger, A., Gustafsson, B., Lötstedt, P., Nilsson, J.: High order accurate solution of the incompressible Navier-Stokes equations. J. Comput. Phys. 203, 49–71 (2005) · Zbl 1061.76040 · doi:10.1016/j.jcp.2004.08.019
[6] Carey, G.F., Spotz, W.F.: High-order compact scheme for the stream-function vorticity equations. Int. J. Numer. Methods Eng. 38, 3497–3512 (1995) · Zbl 0836.76065 · doi:10.1002/nme.1620382008
[7] Carey, G.F., Spotz, W.F.: Extension of high-order compact schemes to time dependent problems. Numer. Methods Partial Differ. Equ. 17(6), 657–672 (2001) · Zbl 0998.65101 · doi:10.1002/num.1032
[8] Carpenter, M.H., Gottlieb, D., Abarbanel, S.: The stability of numerical boundary treatments for compact high-order schemes finite difference schemes. J. Comput. Phys. 108, 272–295 (1993) · Zbl 0791.76052 · doi:10.1006/jcph.1993.1182
[9] Weinan, E., Liu, J.-G.: Essentially compact schemes for unsteady viscous incompressible flows. J. Comput. Phys. 126, 122–138 (1996) · Zbl 0853.76045 · doi:10.1006/jcph.1996.0125
[10] Fishelov, D., Ben-Artzi, M., Croisille, J.-P.: Recent developments in the pure streamfunction formulation of the Navier-Stokes system. J. Sci. Comput. 45(1–3), 238–258 (2010) · Zbl 1203.76045 · doi:10.1007/s10915-010-9374-1
[11] Gupta, M.M., Manohar, R.P., Stephenson, J.W.: Single cell high order scheme for the convection-diffusion equation with variable coefficients. Int. J. Numer. Methods Fluids 4, 641–651 (1984) · Zbl 0545.76096 · doi:10.1002/fld.1650040704
[12] Gustafsson, B.: The convergence rate for difference approximations to mixed initial boundary value problems. Math. Comput. 29, 396–406 (1975) · Zbl 0313.65085 · doi:10.1090/S0025-5718-1975-0386296-7
[13] Gustafsson, B.: The convergence rate for difference approximations to general mixed initial boundary value problems. SIAM J. Numer. Anal. 18, 179–190 (1981) · Zbl 0469.65068 · doi:10.1137/0718014
[14] Lele, S.K.: Compact finite-difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992) · Zbl 0759.65006 · doi:10.1016/0021-9991(92)90324-R
[15] Li, Ming, Tang, Tao: A compact fourth-order finite difference scheme for unsteady viscous incompressible flows. J. Sci. Comput. 16(1), 29–45 (2001) · Zbl 1172.76344 · doi:10.1023/A:1011146429794
[16] Stephenson, J.W.: Single cell discretizations of order two and four for biharmonic problems. J. Comput. Phys. 55, 65–80 (1984) · Zbl 0542.65051 · doi:10.1016/0021-9991(84)90015-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.