×

Matrix-valued Schrödinger operators over finite adeles. (English) Zbl 1534.81048

Summary: Let \(K\) be an algebraic number field. With \(K\) we associate the ring of finite adeles \(\mathbb{A}_K\). In this paper we give a path integral formula for the propagator of a quantum mechanical system over the abelian group \(\mathbb{A}_K^n\). Specifically, we consider matrix-valued Hamiltonian operators \(H_{\mathbb{A}_K^n}= \Delta_{\mathbb{A}_K^n}\otimes\mathrm{Id}+V\), where \(\Delta_{\mathbb{A}_K^n}\) is the Vladimirov operator and \(V\) is a non-negative definite potential. The free part of the Hamiltonian gives rise to a measure on the Skorokhod space of paths which allows us to prove the Feynman-Kac formula for the Schrödinger semigroup generated by \(-H_{\mathbb{A}_K^n}\) This formula is given in terms of the ordered time exponentials.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
46S10 Functional analysis over fields other than \(\mathbb{R}\) or \(\mathbb{C}\) or the quaternions; non-Archimedean functional analysis
11R56 Adèle rings and groups
43A25 Fourier and Fourier-Stieltjes transforms on locally compact and other abelian groups
60J65 Brownian motion
70H05 Hamilton’s equations
47D08 Schrödinger and Feynman-Kac semigroups
37M10 Time series analysis of dynamical systems
Full Text: DOI

References:

[1] Aguilar-Arteaga, V. A., Cruz-López, M. and Estala-Arias, S., Non-Archimedean analysis and a wave-type pseudodifferential equation on finite adèles, J. Pseudo-Differ. Oper. Appl.11 (2020) 1139-1181. · Zbl 1466.35380
[2] Bakken, E. M. and Digernes, T., Finite approximations of physical models over local fields, p-Adic Numbers Ultrametric Anal. Appl.7 (2015) 245-258. · Zbl 1345.47067
[3] Dragovich, B., Khrennikov, A. Yu., Kozyrev, S. V. and Volovich, I. V., On \(p\)-adic mathematical physics, p-Adic Numbers Ultrametric Anal. Appl.1 (2009) 1-17. · Zbl 1187.81004
[4] Digernes, T., Varadarajan, V. S. and Weisbart, D. E., Schrödinger operators on local fields: Self-adjointness and path integral representations for propagators, Infin. Dimens. Anal. Quantum Probab. Relat. Top.11 (2008) 495-512. · Zbl 1162.47038
[5] Digernes, T. and Weisbart, D., Matrix-valued Schröinger operators over local fields, p-Adic Numbers Ultrametric Anal. Appl.1 (2009) 136-144. · Zbl 1187.47037
[6] Halmos, P. R., Measure Theory, , Vol. 18 (Springer-Verlag, 2014).
[7] Karwowski, W. and Mendes, R. V., Hierarchical structures and asymmetric stochastic processes on \(p\)-adics and adeles, J. Math. Phys.35 (1994) 4637-4650. · Zbl 0814.60103
[8] Kochubei, A. N., Pseudo-differential Equations and Stochastics over non-Archimedean Fields, , Vol. 244 (Marcel Dekker, 2001). · Zbl 0984.11063
[9] Manin, Yu. I., Reflections on arithmetical physics, in Conformal Invariance and String Theory (Poiana Braşov, 1987), (Academic Press, 1989), pp. 293-303.
[10] Meurice, Y., A path integral formulation of \(p\)-adic quantum mechanics, Phys. Lett. B245 (1990) 99-104.
[11] Narkiewicz, W., Elementary and Analytic Theory of Algebraic Numbers, , 3rd edn. (Springer-Verlag, 2004). · Zbl 1159.11039
[12] Neukirch, J., Algebraic Number Theory (, Vol. 322 (Springer-Verlag, 1999). Translated from the 1992 German original and with a note by Norbert Schappacher. · Zbl 0956.11021
[13] Parisi, G., On \(p\)-adic functional integrals, Mod. Phys. Lett. A3 (1988) 639-643.
[14] Ramakrishnan, D. and Valenza, R. J., Fourier Analysis on Number Fields, , Vol. 186 (Springer-Verlag, 1999). · Zbl 0916.11058
[15] Rammal, R., Toulouse, G. and Virasoro, M. A., Ultrametricity for physicistsRev. Mod. Phys.58 (1986) 765-788.
[16] Schmidt, K., Dynamical Systems of Algebraic Origin, , Vol. 128 (Birkhäuser Verlag, 1995). · Zbl 0833.28001
[17] Urban, R., Markov processes on the adeles and Dedekind’s zeta function, Statist. Probab. Lett.82 (2012) 1583-1589. · Zbl 1248.60090
[18] Urban, R., On a diffusion on finite adeles and the Feynman-Kac integral, J. Math. Phys.63 (2022) 122101. · Zbl 1514.47069
[19] Varadarajan, V. S., Path integrals for a class of \(p\)-adic Schrödinger equations, Lett. Math. Phys.39 (1997) 97-106. · Zbl 0868.47047
[20] Varadarajan, V. S. and Weisbart, D., Convergence of quantum systems on grids, J. Math. Anal. Appl.336 (2007) 608-624. · Zbl 1119.81059
[21] V. S. Vladimirov, Generalized functions over the field of \(p\)-adic numbers, Usp. Mat. Nauk.43 (1988) 17-53, translation in Russ. Math. Surv.43 (1988) 19-64 (in Russian). · Zbl 0678.46053
[22] V. S. Vladimirov, On the spectrum of some pseudodifferential operators over the field of \(p\)-adic numbers, Algebra i Analiz2 (1990) 107-124; translation in Leningrad Math. J.2 (1991) 1261-1278 (in Russian). · Zbl 0744.47046
[23] Vladimirov, V. S. and Volovich, I. V., \(p\)-adic quantum mechanics, Commun. Math. Phys.123 (1989) 659-676. · Zbl 0688.22004
[24] Vladimirov, V. S. and Volovich, I. V., \(p\)-adic Schrödinger-type equation, Lett. Math. Phys.18 (1989) 43-53. · Zbl 0702.35219
[25] V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, it p-adic Analysis and Mathematical Physics (Nauka, 1994), translation in Series on Soviet and East European Mathematics, Vol. 1. (World Scientific Publishing, 1994) (in Russian). · Zbl 0812.46076
[26] Volovich, I. V., Number theory as the ultimate physical theory, \(p\)-Adic Numbers, Ultrametric Anal. Appl.2 (2010) 77-87. · Zbl 1258.81074
[27] Weil, A., Basic Number Theory (Springer-Verlag, 1974). · Zbl 0326.12001
[28] Zú”ñiga-Galindo, W. A., Pseudodifferential equations over non-Archimedean spaces, , 2174 (Springer, Cham, 2016). · Zbl 1367.35006
[29] Yasuda, K., Markov processes on the adeles and Chebyshev function, Statist. Probab. Lett.83 (2013) 238-244. · Zbl 1264.60059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.