×

Series expansions for Maass forms on the full modular group from the Farey transfer operators. (English) Zbl 1458.11071

Summary: We deepen the study of the relations previously established by D. H. Mayer [Bull. Am. Math. Soc., New Ser. 25, No. 1, 55–60 (1991; Zbl 0729.58041)], J. Lewis and D. Zagier [Ann. Math. (2) 153, No. 1, 191–258 (2001; Zbl 1061.11021)], and the authors, among the eigenfunctions of the transfer operators of the Gauss and the Farey maps, the solutions of the Lewis-Zagier three-term functional equation and the Maass forms on the modular surface \(\mathrm{PSL}(2, \mathbb{Z}) \backslash \mathcal{H} \). In particular we introduce an “inverse” of the integral transform studied by Lewis and Zagier [loc. cit.], and use it to obtain new series expansions for the Maass cusp forms and the non-holomorphic Eisenstein series restricted to the imaginary axis. As corollaries we obtain further information on the Fourier coefficients of the forms, including a new series expansion for the divisor function.

MSC:

11F37 Forms of half-integer weight; nonholomorphic modular forms
11M36 Selberg zeta functions and regularized determinants; applications to spectral theory, Dirichlet series, Eisenstein series, etc. (explicit formulas)
37C30 Functional analytic techniques in dynamical systems; zeta functions, (Ruelle-Frobenius) transfer operators, etc.

Software:

DLMF

References:

[1] Bandtlow, O. F.; Jenkinson, O., Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions, Adv. Math., 218, 902-925 (2008) · Zbl 1145.37016
[2] Ben Ammou, S.; Bonanno, C.; Chouari, I.; Isola, S., On the leading eigenvalue of transfer operators of the Farey map with real temperature, Chaos Solitons Fractals, 71, 60-65 (2015) · Zbl 1352.37111
[3] Bonanno, C.; Graffi, S.; Isola, S., Spectral analysis of transfer operators associated to Farey fractions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 19, 1-23 (2008) · Zbl 1142.37021
[4] Bonanno, C.; Isola, S., A thermodynamic approach to two-variable Ruelle and Selberg zeta functions via the Farey map, Nonlinearity, 27, 897-926 (2014) · Zbl 1312.37020
[5] Bruggeman, R.; Lewis, J.; Zagier, D., Period functions for Maass wave forms and cohomology, Mem. Amer. Math. Soc., 237, 1118 (2015) · Zbl 1396.11072
[6] Chang, C.-H.; Mayer, D., The period function of the nonholomorphic Eisenstein series for \(\operatorname{PSL}(2, Z)\), Math. Phys. Electron. J., 4, Article 6 pp. (1998) · Zbl 0927.11027
[7] Chang, C.-H.; Mayer, D., Thermodynamic formalism and Selberg’s zeta function for modular groups, Regul. Chaotic Dyn., 5, 281-312 (2000) · Zbl 0979.37014
[8] Deitmar, A.; Hilgert, J., A Lewis correspondence for submodular groups, Forum Math., 19, 1075-1099 (2007) · Zbl 1211.11063
[9] Efrat, I., Dynamics of the continued fraction map and the spectral theory of \(S L(2, \mathbf{Z})\), Invent. Math., 114, 207-218 (1993) · Zbl 0811.11037
[10] Erdèly, A., Higher transcendental functions, (Bateman Manuscript Project, Vols. I-III (1955), McGraw-Hill: McGraw-Hill New York) · Zbl 0064.06302
[11] Erdèly, A., Tables of integral transforms, (Bateman Manuscript Project, Vols. I-II (1954), McGraw-Hill: McGraw-Hill New York) · Zbl 0055.36401
[12] Gradshteyn, I.; Ryzhik, I., Tables of Integrals, Series, and Products (2007), Academic Press · Zbl 1208.65001
[13] Isola, S., On the spectrum of Farey and Gauss maps, Nonlinearity, 15, 1521-1539 (2002) · Zbl 1018.37019
[14] Iwaniec, H., Spectral Methods of Automorphic Forms (2002), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1006.11024
[15] Lewis, J. B., Spaces of holomorphic functions equivalent to even Maass cusp forms, Invent. Math., 127, 271-306 (1997) · Zbl 0922.11043
[16] Lewis, J. B.; Zagier, D., Period functions for Maass wave forms. I, Ann. of Math., 153, 191-258 (2001) · Zbl 1061.11021
[17] Mayer, D. H., On the thermodynamic formalism for the Gauss map, Comm. Math. Phys., 130, 311-333 (1990) · Zbl 0714.58018
[18] Mayer, D. H., The thermodynamic formalism approach to Selberg’s zeta function for \(P S L(2 \mathbb{Z})\), Bull. Amer. Math. Soc., 25, 55-60 (1991) · Zbl 0729.58041
[19] Mayer, D. H.; Mühlenbruch, T.; Strömberg, F., The transfer operator for the Hecke triangle groups, Discrete Contin. Dyn. Syst., 32, 2453-2484 (2012) · Zbl 1297.11110
[20] Möller, M.; Pohl, A. D., Period functions for Hecke triangle groups, and the Selberg zeta function as a Fredholm determinant, Ergodic Theory Dynam. Systems, 33, 247-283 (2013) · Zbl 1277.37048
[21] (Olver, F. W.J.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST Handbook of Mathematical Functions (2010), NIST and Cambridge University Press: NIST and Cambridge University Press New York) · Zbl 1198.00002
[22] Pohl, A. D., A dynamical approach to Maass cusp forms, J. Mod. Dyn., 6, 563-596 (2012) · Zbl 1273.37016
[23] Ramanujan, S., On certain trigonometrical sums and their applications in the theory of numbers, Trans. Camb. Philos. Soc., 22, 259-276 (1918)
[24] Terras, A., Harmonic Analysis on Symmetric Spaces and Applications, Vol. I (1985), Springer-Verlag: Springer-Verlag New York · Zbl 0574.10029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.